用dart语言实现的二叉树,实现了插入.查找.删除,中序遍历.前序.后序遍历等功能. class BinaryTree<E extends Comparable> { Node<E> _root; int _nodeNumbers; BinaryTree() : _nodeNumbers = 0; factory BinaryTree.from(Iterable<E> elements) { var tree = BinaryTree<E>(); for (…
前置说明 不了解二叉树非递归遍历的可以看我之前的文章[数据结构与算法]二叉树模板及例题 Morris 遍历 概述 Morris 遍历是一种遍历二叉树的方式,并且时间复杂度O(N),额外空间复杂度O(1) .通过利用原树中大量空闲指针的方式,达到节省空间的目的 分析 设一棵二叉树有 n 个节点,则所有节点的指针域总和为 2 * n ,所有节点的非空指针域总和为 n - 1(非根节点被一个指针指向,根节点不被指针指向),所有节点的空指针域总和为 2n - (n - 1) = n + 1. 可以看到有…
什么是树? 上面图例就是一个树,用圆代表节点,连接圆的直线代表边.树的顶端总有一个节点,通过它连接第二层的节点,然后第二层连向更下一层的节点,以此递推 ,所以树的顶端小,底部大.和现实中的树是相反的,但是代码一般从顶点开始执行操作 本文会讲述一种特殊的树--二叉树,每个节点最多有两个子节点.普通的树,节点可以多于两个,称为多路树/多叉树 树的术语: 1.路径:顺着节点的边从一个节点走到另一个节点,所经过的节点的顺序排列就称为“路径” 2.根:树顶端的节点称为根.一棵树只有一个根,如果要把一个节点…
  9.1.树的定义   9.2.二叉树 人们把每个节点最多拥有不超过两个子节点的树定义为二叉树.由于限制子节点的数量为 2,人们可以为插入数据.删除数据.以及在二叉树中查找数据编写有效的程序了. 在考虑一种更加特殊的二叉树--二叉查找树的时候,鉴别子节点是很重要的.二叉查找树是一种较小数据值存储在左节点内而较大数据值存储在右节点内的二叉树.正如即将看到的那样,这种属性可以使查找非常有效.   9.2.1.构造二叉查找树 二叉查找树由节点组成,所以需要一个 Node 类,这个类类似于链表实现中用…
在上篇博客中,学习了二分搜索树:Java数据结构和算法(六)--二叉树,但是二分搜索树本身存在一个问题: 如果现在插入的数据为1,2,3,4,5,6,这样有序的数据,或者是逆序 这种情况下的二分搜索树和链表几乎完全一样,是最不平衡的二叉树了,二分搜索树的效率直接降到最低 如何解决上述问题: 使二分搜索树保持平衡二叉树的特征,而今天要讲述的AVL树是最经典的平衡二叉树了 满二叉树: 除了叶子节点其余节点都有左右两个子节点的树 完全二叉树: 对于一个树高为h的二叉树,如果其第0层至第h-1层的节点都…
javascript数据结构与算法-- 二叉树 树是计算机科学中经常用到的一种数据结构.树是一种非线性的数据结构,以分成的方式存储数据,树被用来存储具有层级关系的数据,比如文件系统的文件,树还被用来存储有序列表.我们要研究的是二叉树,在二叉树上查找元素非常快,为二叉树添加元素或者删除元素,也是非常快的. 树的基本结构示意图如下: 我们现在最主要的是要来学习二叉树,二叉树是一种特殊的树,它的特征是 子节点个数不超过2个.如下图就是二叉树的基本结构示意图如下: 二叉树是一种特殊的树,相对较少的值保存…
树.二叉树.三叉树.平衡排序二叉树AVL 一.树的定义 树是计算机算法最重要的非线性结构.树中每个数据元素至多有一个直接前驱,但可以有多个直接后继.树是一种以分支关系定义的层次结构.    a.树是n(≥0)结点组成的有限集合.{N.沃恩}     (树是n(n≥1)个结点组成的有限集合.{D.E.Knuth})      在任意一棵非空树中:        ⑴有且仅有一个没有前驱的结点----根(root).        ⑵当n>1时,其余结点有且仅有一个直接前驱.         ⑶所有结…
前言 数据结构可划分为线性结构.树型结构和图型结构三大类.前面几篇讨论了数组.栈和队列.链表都是线性结构.树型结构中每个结点只允许有一个直接前驱结点,但允许有一个以上直接后驱结点.树型结构有树和二叉树(Binary Tree)两种,二叉树最多只允许有两个直接后继结点的有序树. 本篇将学习树的用途.运行机制以及创建树的方法. 为什么使用二叉树 Q: 为什么要用到树? A: 因为它通常结合了另外两种数据结构的优点:1)有序数组 2)链表.在树中查找数据项的速度和在有序数组中查找一样快,并且插入数据项…
javascript数据结构与算法---二叉树(删除节点) function Node(data,left,right) { this.data = data; this.left = left; this.right = right; this.show = show; } function show() { return this.data; } function BST() { this.root = null; this.insert = insert; this.inOrder = i…
javascript数据结构与算法---二叉树(查找最小值.最大值.给定值) function Node(data,left,right) { this.data = data; this.left = left; this.right = right; this.show = show; } function show() { return this.data; } function BST() { this.root = null; this.insert = insert; this.pr…