版权声明:本文为博主原创文章,遵循 CC 4.0 by-sa 版权协议,转载请附上原文出处链接和本声明.本文链接:https://blog.csdn.net/jiang425776024/article/details/84532018 效果图:程序会动态的展示迭代过程,40以内城市大概迭代300次能收敛到最优:这里是用中国城市地理坐标直接做欧式距离计算,实际上可以根据问题作出调整.Github:https://github.com/425776024/TSP-GA-py 测试数据:china.…
转载地址 https://blog.csdn.net/greedystar/article/details/80343841 目录 一.问题描述 二.算法描述 三.求解说明 四.参考资料 五.源代码 一.问题描述 旅行商问题是图论中的一个著名问题. 假设有一个旅行商人要拜访N个城市,要求他从一个城市出发,每个城市最多拜访一次,最后要回到出发的城市,保证所选择的路径长度最短. 二.算法描述 (一)算法简介 遗传算法(GeneticAlgorithm)是模拟达尔文生物进化论的自然选择和遗传学机理的生…
近期为做展示,改写了一个遗传算法求TSP的Java界面版,思路代码和 http://blog.csdn.net/wangqiuyun/article/details/12838903 这篇文章思路是一样的,追加了Java用Graphics画点及画线做路径展示,展示部分做得比較粗糙,须要的拿走,效果图例如以下. 下载地址:http://download.csdn.net/detail/wangqiuyun/7406201 另C#界面版:http://blog.csdn.net/wangqiuyun…
import random import math import matplotlib.pyplot as plt import city class no: #该类表示每个点的坐标 def __init__(self,x,y): self.x = x self.y = y def draw(t): #该函数用于描绘路线图 x = [0] * (m+1) y = [0] * (m+1) for i in range(m): x[i] = p[t[i]].x y[i] = p[t[i]].y x[…
package com.louis.tsp; /** * Project Name:GeneticAlgorithm * File Name:Individual.java * Package Name: * Date:2017年9月23日下午5:02:00 * Copyright (c) 2017, 2692613726@qq.com All Rights Reserved. * */ /** * ClassName:Individual * Function: 个体类 * Reason: T…
参考资料: 遗传算法解决TSP旅行商问题(附:Python实现) 遗传算法详解(GA)(个人觉得很形象,很适合初学者) from itertools import permutations import numpy as np import matplotlib import matplotlib.pyplot as plt from itertools import combinations, permutations #%matplotlib inline def fitnessFuncti…
上一次我们使用遗传算法求解了一个较为复杂的多元非线性函数的极值问题,也基本了解了遗传算法的实现基本步骤.这一次,我再以经典的TSP问题为例,更加深入地说明遗传算法中选择.交叉.变异等核心步骤的实现.而且这一次解决的是离散型问题,上一次解决的是连续型问题,刚好形成对照. 首先介绍一下TSP问题.TSP(traveling salesman problem,旅行商问题)是典型的NP完全问题,即其最坏情况下的时间复杂度随着问题规模的增大按指数方式增长,到目前为止还没有找到一个多项式时间的有效算法.TS…
00 前言 上次变邻域搜索的推文发出来以后,看过的小伙伴纷纷叫好.小编大受鼓舞,连夜赶工,总算是完成了手头上的一份关于变邻域搜索算法解TSP问题的代码.今天,就在此给大家双手奉上啦,希望大家能ENJOY哦! 01 代码说明 本次代码还是基于求解TSP旅行商问题的.至于什么是TSP问题,小编这实在是不想科普啦-- 代码是基于迭代搜索那个代码魔改过来的.其实看了这么多启发式算法解TSP问题的代码.想必各位都有了一个比较清晰的认识,其实呀.之前介绍的模拟退火.遗传算法.迭代搜索和现在的变邻域等等,是十…
模拟退火算法SA原理及python.java.php.c++语言代码实现TSP旅行商问题,智能优化算法,随机寻优算法,全局最短路径 模拟退火算法(Simulated Annealing,SA)最早的思想是由N. Metropolis等人于1953年提出.1983 年,S. Kirkpatrick 等成功地将退火思想引入到组合优化领域.来源于固体退火原理,将固体加温至充分高,再让其徐徐冷却,加温时,固体内部粒子随温升变为无序状,内能增大,而徐徐冷却时粒子渐趋有序,在每个温度都达到平衡态,最后在常温…
本来以为在了解蚁群算法的基础上实现这道奇怪的算法题并不难,结果实际上大相径庭啊.做了近三天时间,才改成现在这能勉强拿的出手的模样.由于公式都是图片,暂且以截图代替那部分内容吧,mark一记. 1 蚁群算法 (1) 蚁群AS算法简介 20世纪90年代意大利学者M.Dorigo,V.Maniezzo,A.Colorni等从生物进化的机制中受到启发,通过模拟自然界蚂蚁搜索路径的行为,提出来一种新型的模拟进化算法—— 蚁群算法,是群智能理论研究领域的一种主要算法.用该方法求解TSP问题.分配问题.job…
两句闲话 本文所说的排序是指基于交换的排序.因此,按理来说,本文应该叫基于交换的排序的动态展示,但是这样太拗口了. 效果展示 最终效果如下. 实现方法 需要说明的是,在这里是通过pygame来实现图形界面:程序使用python 3.5编写.使用pygame的好处在于,它非常自由(当然也非常麻烦). 我们一共需要编写四个文件:draw.py,sort_show.py,sort.py,main.py. 1.draw.py 在这里,我们先在draw.py中写一个Draw类,以实现pygame生成界面的…
概述 前段时间在搞贪心算法,为了举例,故拿TSP来开刀,写了段求解算法代码以便有需之人,注意代码考虑可读性从最容易理解角度写,没有优化,有需要可以自行优化! 详细 代码下载:http://www.demodashi.com/demo/10267.html 前段时间在搞贪心算法,为了举例,故拿TSP来开刀,写了段求解算法代码以便有需之人,注意代码考虑可读性从最容易理解角度写,没有优化,有需要可以自行优化! 一.TPS问题 TSP问题(Travelling Salesman Problem)即旅行商…
一.TSP问题 TSP问题(Travelling Salesman Problem)即旅行商问题,又译为旅行推销员问题.货郎担问题,是数学领域中著名问题之一.假设有一个旅行商人要拜访n个城市,他必须选择所要走的路径,路径的限制是每个城市只能拜访一次,而且最后要回到原来出发的城市.路径的选择目标是要求得的路径路程为所有路径之中的最小值. TSP问题是一个组合优化问题.该问题可以被证明具有NPC计算复杂性.TSP问题可以分为两类,一类是对称TSP问题(Symmetric TSP),另一类是非对称问题…
摘要: 本实验采用遗传算法实现了旅行商问题的模拟求解,并在同等规模问题上用最小生成树算法做了一定的对比工作.遗传算法在计算时间和占用内存上,都远远优于最小生成树算法. 程序采用Microsoft visual studio 2008 结合MFC基本对话框类库开发.32位windows 7系统下调试运行. 引言 遗传算法(Genetic Algorithm)是模拟达尔文生物进化论的自然选择和遗传学机理的生物进化过程的计算模型,是一种通过模拟自然进化过程搜索最优解的方法,由密歇根大学的约翰•霍兰德和…
1实验环境 实验环境:CPU i5-2450M@2.50GHz,内存6G,windows7 64位操作系统 实现语言:java (JDK1.8) 实验数据:TSPLIB,TSP采样实例库中的att48数据源 数据地址:http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/tsp/att48.tsp.gz TSPLIB是一个从各种来源和各种类型中产生的TSP及其相关问题的采样实例库,这里选取TSP采样实例库中的att48数据源,最优值为1062…
这篇文章是之前写的智能算法(遗传算法(GA).粒子群算法(PSO))的补充.其实代码我老早之前就写完了,今天恰好重新翻到了,就拿出来给大家分享一下,也当是回顾与总结了. 首先介绍一下模拟退火算法(SA).模拟退火算法(simulated annealing,SA)算法最早是由Metropolis等人提出的.其出发点是基于物理中固体物质的退火过程与一般组合优化问题之间的相似性.模拟退火算法是一种通用的优化算法,其物理退火过程由以下三部分组成: (1)加温过程 (2)等温过程 (3)冷却过程 其中加…
一.TSP问题 TSP问题(Travelling Salesman Problem)即旅行商问题,又译为旅行推销员问题.货郎担问题,是数学领域中著名问题之一.假设有一个旅行商人要拜访n个城市,他必须选择所要走的路径,路径的限制是每个城市只能拜访一次,而且最后要回到原来出发的城市.路径的选择目标是要求得的路径路程为所有路径之中的最小值. TSP问题是一个组合优化问题.该问题可以被证明具有NPC计算复杂性.TSP问题可以分为两类,一类是对称TSP问题(Symmetric TSP),另一类是非对称问题…
本文将介绍如何在 web 框架 Flask 中使用可视化工具 pyecharts, 看完本教程你将掌握几种动态展示可视化数据的方法,不会的话你来找我呀- Flask 模板渲染 1. 新建一个项目flask_pyecharts 在编辑器中选择 New Project,然后选择 Flask,创建完之后,Pycharm 会帮我们把启动脚本和模板文件夹都建好 2. 拷贝 pyecharts 模板 将链接中的以下模板 ├── jupyter_lab.html ├── jupyter_notebook.ht…
前言需求: 必须现在需要动态创建16个list,每个list的名字不一样,但是是有规律可循,比如第一个list的名字叫: arriage_list_0=[],第二个叫arriage_list_1=[]……..依次类推,但是我又不想手动的去写16个这样的名字,太累了,而且增加了代码的冗余性,灵活性也不强,所以有没有一种方法是能动态创建list名称的呢?答案是有的!而与之对应,既然要对上面的列表动态操作,肯定是少不了动态去解析list名称.所以下面开始介绍方法. python 动态生成变量名loca…
知乎上也有相似的问题 偶然碰到一个问题,初想是通过动态创建Python函数的方式来解决,于是调研了动态创建Python函数的方法. 定义lambda函数 在Python中定义lambda函数的写法很简单, func = lambda: "foobar" 可以认为lambda函数是最常用的一种方式. 定义局部函数 Python中函数可以在代码块中进行定义,比如decorator就是通过这种方式实现的, def decorator(func): def _(*args, **kwargs)…
1.编码 这篇文章中遗传算法对TSP问题的解空间编码是十进制编码.如果有十个城市,编码可以如下: 0 1 2 3 4 5 6 7 8 9 这条编码代表着一条路径,先经过0,再经过1,依次下去. 2.选择 选择操作仍然是轮盘赌模型,虽然不会出现路径长度为负数的情况,但是需要考虑与上篇文章不同的是求的是最小值.因此在代码中概率的计算为: 3.交叉 4.变异 变异操作就是交换两个城市,例如: 0 1 2 3 4 0 2 1 3 4 5.代码实现 #include<stdio.h> #include&…
微信小程序给我们提供了一个很好的开发平台,可以用于展现各种数据和实现丰富的功能,本篇随笔介绍微信小程序结合后台数据管理实现商品数据的动态展示.维护,介绍如何实现商品数据在后台管理系统中的维护管理,并通过小程序的请求Web API 平台获取JSON数据在小程序界面上进行动态展示. 1.整体性的架构设计 我们整体性的架构设计,包含一个Web管理后台.一个Web API统一接口层.当然还有数据库什么,另外还有一个小程序客户端.整个架构体系还是以我之前随笔介绍的<整合微信小程序的Web API接口层的架…
在python中,省去了变量声明的过程,在引用变量时,往往一个简单的赋值语句就同时完成了,声明变量类型,变量定义和关联的过程,那么python的变量到底是怎样完成定义的呢? 动态类型 python使用动态类型和他提供的多态性来提供python语言的简洁灵活的基础.在python中我们是不会声明所使用对象的确切类型的.所谓的python动态类型,就是在程序运行的过程中自动决定对象的类型. 对象.变量和引用 当我们在赋值一个变量时,在python中其实自动做了很多事情. 1.创建变量:当代码第一次赋…
在我们做客户关系管理系统的Winform界面的时候,需要对进展阶段这个属性进行一个方便的动态切换和标记处理,如我们根据不同的进展阶段显示不同的相关信息,也可以随时保存当前的阶段信息.其实也是一个比较常见的功能,我们可以把字典列表扁平化动态展示在控件上,然后根据用户选择的阶段位置进行切换即可,本篇随笔就是在客户的需求基础上完善这个功能. 1.进展阶段的动态展示和处理 我们来看看界面的大致情况 其实这部分是根据字典列表进行动态展示的,也就是使用一个用户控件进行处理即可. 为了实现这个功能,我们先创建…
1. 学习计划 1.Activemq整合spring的应用场景 2.添加商品同步索引库 3.商品详情页面动态展示 4.展示详情页面使用缓存 2. Activemq整合spring 2.1. 使用方法 第一步:引用相关的jar包. <dependency> <groupId>org.springframework</groupId> <artifactId>spring-jms</artifactId> </dependency> &l…
前言 上次出了邻域搜索的各种概念科普,尤其是LNS和ALNS的具体过程更是描述得一清二楚.不知道你萌都懂了吗?小编相信大家早就get到啦.不过有个别不愿意透露姓名的热心网友表示上次没有代码,遂不过瘾啊~哎,大家先别急,代码有得你们酸爽的-- 不过由于ALNS的代码量实在太大,小编打算把这个做成一个系列来一一为大家讲解,好让小伙伴们彻底把这个算法框架的代码吃透.今天暂时还是先不对代码进行讲解,先来教大家怎么使用ALNS的框架求解一个TSP问题吧~ 环境准备 小编的演示是基于Windows 10 x…
在python中,省去了变量声明的过程,在引用变量时,往往一个简单的赋值语句就同时完成了,声明变量类型,变量定义和关联的过程,那么python的变量到底是怎样完成定义的呢? 动态类型 python使用动态类型和他提供的多态性来提供python语言的简洁灵活的基础.在python中我们是不会声明所使用对象的确切类型的.所谓的python动态类型,就是在程序运行的过程中自动决定对象的类型. 对象.变量和引用 当我们在赋值一个变量时,在python中其实自动做了很多事情. 1.创建变量:当代码第一次赋…
1.本篇教程以ajax+php动态展示[省.市.县.镇]四级地区单位 2.效果图:    3.不废话,贴代码! HTML: <div class="form-group"> <label class="col-sm-3 control-label" for="onecity"> 地区分类 <span class="text-danger">*</span> </label&…
1.首先urllib不能用了,需要引入的是urllib2,正则re. #coding=utf-8 # import urllib import urllib2 import re def getHtml(url): page = urllib2.urlopen(url) html = page.read() return html def getCountry(html): reg = r'<td>(.*?)</td>' #imgre = re.compile(reg)#编译会出错…
---恢复内容开始--- python动态添加属性: class Person(object): def __init__(self,newName,newAge): self.name = newName self.age = newAge laowang = Person("laowang",20) print(laowang.name) print(laowang.age) laowang.addr = "北京"#动态添加的属性addr print(laowa…