目录 摘要 故事要点 模型训练 发表在2018年CVPR. 以下对于一些专业术语的翻译可能有些问题. 摘要 有损压缩是一个优化问题,其优化目标是率失真,优化对象是编码器.量化器和解码器(同时优化). Lossy image compression can be formulated as a joint rate-distortion optimization to learn encoder, quantizer, and decoder. 其中,量化器和离散熵预测(discrete entr…
目录 故事背景 U-Net 具体结构 损失 数据扩充 发表在2015 MICCAI.原本是一篇医学图像分割的论文,但由于U-Net杰出的网络设计,得到了8k+的引用. 摘要 There is large consent that successful training of deep networks requires many thousand annotated training samples. In this paper, we present a network and trainin…
Link of the Paper: https://arxiv.org/abs/1705.03122 Motivation: Compared to recurrent layers, convolutions create representations for fixed size contexts, however, the effective context size of the network can easily be made larger by stacking severa…
Learning Convolutional Neural Networks for Graphs 2018-01-17  21:41:57 [Introduction] 这篇 paper 是发表在 ICML 2016 的:http://jmlr.org/proceedings/papers/v48/niepert16.pdf 上图展示了传统 CNN 在 image 上进行卷积操作的工作流程.(a)就是通过滑动窗口的形式,利用3*3 的卷积核在 image 上进行滑动,来感知以某一个像素点为中心…
作者:嫩芽33出处:http://www.cnblogs.com/nenya33/p/7122701.html 版权:本文版权归作者和博客园共有 转载:欢迎转载,但未经作者同意,必须保留此段声明:必须在文章中给出原文连接:否则必究法律责任 学习了一篇用CNN做光流的paper,简称FlowNet. 1. 论文题目  FlowNet: Learning Optical Flow with Convolutional Networks 2.背景 为什么想到用CNN做光流:最近提出的CNN架构可以做逐…
目录 黄高老师190919在北航的报告听后感 故事背景 网络结构 Dense block DenseNet 过渡层 成长率 瓶颈层 细节 实验 发表在2017 CVPR. 摘要 Recent work has shown that convolutional networks can be substantially deeper, more accurate, and efficient to train if they contain shorter connections between…
一.读前说明 1.论文"Densely Connected Convolutional Networks"是现在为止效果最好的CNN架构,比Resnet还好,有必要学习一下它为什么效果这么好. 2.代码地址:https://github.com/liuzhuang13/DenseNet 3.这篇论文主要参考了Highway Networks,Residual Networks (ResNets)和GoogLeNet,所以在读本篇论文之前,有必要读一下这几篇论文,另外还可以看一下Very…
翻译: How to do Deep Learning on Graphs with Graph Convolutional Networks 什么是图卷积网络 图卷积网络是一个在图上进行操作的神经网络.给定一个图\(G=(E,V)\) ,一个GCN的输入包括: 一个输入特征矩阵X,其维度是\(N\times F^0\) ,其中N是节点的数目,\(F^0\)是每个节点输入特征的数目 一个\(N \times N\)的对于图结构的表示的矩阵,例如G的邻接矩阵A GCN的一个隐藏层可以写成\(H^i…
Zhuang Liu主页:https://liuzhuang13.github.io/ Learning Efficient Convolutional Networks through Network Slimming: https://arxiv.org/pdf/1708.06519.pdf 后续出了:Rethinking the Value of Network Pruning (Pytorch) (ICLR 2019),https://github.com/Eric-mingjie/re…
Learning Efficient Convolutional Networks through Network Slimming 简介 这是我看的第一篇模型压缩方面的论文,应该也算比较出名的一篇吧,因为很早就对模型压缩比较感兴趣,所以抽了个时间看了一篇,代码也自己实现了一下,觉得还是挺容易的.这篇文章就模型压缩问题提出了一种剪枝针对BN层的剪枝方法,作者通过利用BN层的权重来评估输入channel的score,通过对score进行threshold过滤到score低的channel,在连接的…