集体智慧编程PDF 1.图书思维导图http://www.pythoner.com/183.html p.p1 { margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px "Helvetica Neue"; color: #454545 } p.p2 { margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px ".PingFang SC"; color: #454545 } span.s1 {…
http://www.douban.com/note/319219518/?type=like win7基于mahout推荐之用户相似度计算 2013-12-03 09:19:11    事情回到半年前,我想做关于推荐系统的东西,结果看到了强大的apache mahout,然后各种安装linux,hadoop,apache,mahout,taste,结局是,一个星期的努力,失败....linux实在是hold不住啊,最后放弃了,可是最近计算用户相似度,实在是喜欢mahout 的开源,硬着头皮使用…
欧几里德距离评价: 以经过人们一致评价的物品为坐标轴,然后将参与评价的人绘制到图上,并考察他们彼此之间的距离远近.计算出每一轴向上的差值,求平方之后再相加,最后对总和取平方根. # -*- coding: UTF-8 -*- #一个涉及影评者及其对几部影片评分情况的字典 critics={'Lisa Rose': {'Lady in the Water': 2.5, 'Snakes on a Plane': 3.5, 'Just My Luck': 3.0, 'Superman Returns'…
知识点: 1. 协作型过滤--Collaboraive Filtering 通常的做法是对一群人进行搜索,并从中找出与我们品味相近的一小群人,算法会对这些人的偏好进行考察,并将它们组合起来构造出一个经过排名的推荐列表 2.搜索偏好--Collecting Preferences 3.寻找相近的用户--Finding Similar Users 3.1 通过相似度评价值来寻找相近的用户 3.2 相似度评价值体系:欧几里得距离(Euclidean Distance ),皮尔逊相关度(Pearson…
这一章讲的是利用聚集算法对blog进行分类. 首先是构造数据,找到一组blog,每个blog包含一组单词.这样就形成了(blog-name, word*)*的数据结构. 在构造该数据结构的过程中,还需要删除那些出现得太广泛的单词,删除的办法是计算每个词出现的总次数以及blog的总数,两者的比例超出某个特定的数值则表明该单词太泛滥了. 然后是计算blog之间的距离,和前一章一样,存在两种计算的方式.欧氏距离和pearson相关系数. 然后是聚集算法,存在两种聚集的方法,一种是基于row的,另一种是…
电子工业出版社,2015年第3版 P153,增加了buildtree函数后执行出错,报错为: --------------------------------------------------------------------------- TypeError Traceback (most recent call last) <ipython-input-27-d4c8cc29c32a> in <module>() ----> 1 treepredict.buildtr…
不多说,直接上干货! 常见的推荐算法 1.基于关系规则的推荐 2.基于内容的推荐 3.人口统计式的推荐 4.协调过滤式的推荐 协调过滤算法,是一种基于群体用户或者物品的典型推荐算法,也是目前常用的推荐算法中最常用和最经典的算法. 协调过滤算法主要有两种: 用户对物品:  考查具有相同爱好的用户对相同物品的评分标准进行计算: 物品对用户:  考查具有相同物质的物品从而推荐给选择了某件物品的用户. 相似度度量(基于欧几里得距离的相似度计算和基于余弦角度的相似度计算) (1).基于欧几里得距离的相似度…
在前一篇文章 <海量数据相似度计算之simhash和海明距离> 介绍了simhash的原理,大家应该感觉到了算法的魅力.但是随着业务的增长 simhash的数据也会暴增,如果一天100w,10天就1000w了.我们如果插入一条数据就要去比较1000w次的simhash,计算量还是蛮大,普通PC 比较1000w次海明距离需要 300ms ,和5000w数据比较需要1.8 s.看起来相似度计算不是很慢,还在秒级别.给大家算一笔账就知道了: 随着业务增长需要一个小时处理100w次,一个小时为3600…
编译最近的协同过滤算法皮尔逊相似度计算.下顺便研究R简单使用的语言.概率统计知识. 一.概率论和统计学概念复习 1)期望值(Expected Value) 由于这里每一个数都是等概率的.所以就当做是数组或向量中全部元素的平均数吧.能够使用R语言中函数mean(). 2)方差(Variance) 方差分为population variance整体方差和sample variance样本方差,差别是整体方差除以N,样本方差除以N-1. 数理统计中经常使用样本方差,R语言的var()函数计算的也是样本…
欢迎大家前往腾讯云社区,获取更多腾讯海量技术实践干货哦~ 本篇文章是我在读期间,对自然语言处理中的文本相似度问题研究取得的一点小成果.如果你对自然语言处理 (natural language processing, NLP) 和卷积神经网络(convolutional neural network, CNN)有一定的了解,可以直接看摘要和LSF-SCNN创新与技术实现部分.如果能启发灵感,应用于更多的现实场景中带来效果提升,那才是这篇文章闪光的时刻.如果你没有接触过NLP和CNN,也不在担心,可…