Auto-DeepLab: Hierarchical Neural Architecture Search for Semantic Image Segmentation2019-03-18 14:45:44 Paper:https://arxiv.org/pdf/1901.02985 Offical TensorFlow Code: https://github.com/tensorflow/models/blob/master/research/deeplab/core/nas_networ…
Pytorch实现代码:https://github.com/MenghaoGuo/AutoDeeplab 创新点 cell-level and network-level search 以往的NAS算法都侧重于搜索cell的结构,即当搜索得到一种cell结构后只是简单地将固定数量的cell按链式结构连接起来组成最终的网络模型.AutoDeeplab则将如何cell的连接方式也纳入了搜索空间中,进一步扩大了网络结构的范围. dense image prediction 之前的大多数NAS算法都是…
Decoupled Deep Neural Network for Semi-supervised Semantic Segmentation xx…
A CNN Cascade for Landmark Guided Semantic Part Segmentation  ECCV 2016 摘要:本文提出了一种 CNN cascade (CNN 级联)结构,根据一系列的定位(landmarks or keypoints),得到特定的 pose 信息,进行 语义 part 分割.前人有许多单独的工作,但是,貌似没有将这两个工作结合到一起,相互作用的 multi-task 的工作.本文就弥补这个缺口,提出一种 CNN cascade 的 tas…
之前已经发过一篇文章来介绍我写的AutoML综述,最近把文章内容做了更新,所以这篇稍微细致地介绍一下.由于篇幅有限,下面介绍的方法中涉及到的细节感兴趣的可以移步到论文中查看. 论文地址:https://arxiv.org/abs/1908.00709 1. Introduction 以往的模型都是靠大佬们不断试错和调参炼丹炼出来的,而且不同场景或者不同类型的数据集又得设计不同的网络模型,而我等穷&菜鸡在设计模型的天赋和计算资源上都比不过大佬们.幸运的是终于有体恤民意的大佬提出了Neural Ar…
摘要 神经网络在多个领域都取得了不错的成绩,但是神经网络的合理设计却是比较困难的.在本篇论文中,作者使用 递归网络去省城神经网络的模型描述,并且使用 增强学习训练RNN,以使得生成得到的模型在验证集上取得最大的准确率. 在 CIFAR-10数据集上,基于本文提出的方法生成的模型在测试集上得到结果优于目前人类设计的所有模型.测试集误差率为3.65%,比之前使用相似结构的最先进的模型结构还有低0.09%,速度快1.05倍. 在 Penn Treebank数据集上,根据本文算法得到的模型能够生成一个新…
摘要 本文提出了一种新方法,可以基于简单的爬山过程自动搜索性能良好的CNN架构,该算法运算符应用网络态射,然后通过余弦退火进行短期优化运行. 令人惊讶的是,这种简单的方法产生了有竞争力的结果,尽管只需要与训练单个网络相同数量级的资源.例如使用该算法,在单个GPU上训练12个小时就可以将CIFAR-10数据集的错误率降低到6%一下,训练一整天后能够降低到5%左右. 1.介绍 背景不再详述,我们可以知道的是传统的优化算法并不能实现神经网络架构的自动搜索是因为其架构搜索空间是 离散的(例如层数.层类型…
论文笔记系列-Neural Network Search :A Survey 论文 笔记 NAS automl survey review reinforcement learning Bayesian Optimization evolutionary algorithm  注:本文主要是结合自己理解对原文献的总结翻译,有的部分直接翻译成英文不太好理解,所以查阅原文会更直观更好理解. 本文主要就Search Space.Search Strategy.Performance Estimatio…
Fast Neural Architecture Search of Compact Semantic Segmentation Models via Auxiliary Cells 2019-04-24 14:49:10 Paper:https://arxiv.org/pdf/1810.10804.pdf 在过去的许多年,大家一直认为网络结构的设计是人类的事情.但是,近些年 NAS 的发展,打破了这种观念,用自动化的方法在给定的数据上设计合适的网络结构,变的势不可挡.本文在语义分割的任务上,尝…
ProxylessNAS: Direct Neural Architecture Search on Target Task and Hardware 2019-03-19 16:13:18 Paper:https://openreview.net/forum?id=HylVB3AqYm Code:https://github.com/MIT-HAN-LAB/ProxylessNAS 1. Background and Motivation:  先来看看算法的名字:ProxylessNAS,将其…