这里的先后关系可以看成节点和父亲的关系 在树里面,没有父亲肯定就没有节点 所以我们可以先修的看作父亲,后修的看作节点 所以这是一颗树 这题和上一道题比较相似 都是求树上最大点权和问题 但这道题是多叉树 这里有多个根,那就加一个编号为0的根,价值为0, 同时m要+1(因为这个虚拟的 根一定要取) 解法两种 (1)转二叉树 左儿子右兄弟可以转二叉树 这篇博客讲得很好 https://blog.csdn.net/c20190102/article/details/69946551 注意这里转后有"后遗…
洛谷 P2014 选课(树形背包) 思路 题面:洛谷 P2014 如题这种有依赖性的任务可以用一棵树表示,因为一个儿子要访问到就必须先访问到父亲.然后,本来本题所有树是森林(没有共同祖先),但是题中的节点\(0\)其实就可以当做一个LCA,从节点\(0\)开始dp. 状态定义:\(dp[x][m]\)x节点,选则m课,获得的最大学分 决策时,类比背包,遍历每一个状态,用儿子的状态更新 dp转移方程(已优化一维): \[ dp[x][i] = max{dp[x][i-j]+dp[son(x)][j…
洛谷P2014 选课 题目描述 在大学里每个学生,为了达到一定的学分,必须从很多课程里选择一些课程来学习,在课程里有些课程必须在某些课程之前学习,如高等数学总是在其它课程之前学习.现在有N门功课,每门课有个学分,每门课有一门或没有直接先修课(若课程a是课程b的先修课即只有学完了课程a,才能学习课程b).一个学生要从这些课程里选择M门课程学习,问他能获得的最大学分是多少? 输入输出格式 输入格式: 第一行有两个整数N,M用空格隔开.(1<=N<=300,1<=M<=300) 接下来的…
[BZOJ2830/洛谷3830]随机树(动态规划) 题面 洛谷 题解 先考虑第一问. 第一问的答案显然就是所有情况下所有点的深度的平均数. 考虑新加入的两个点,一定会删去某个叶子,然后新加入两个深度为原先叶子\(+1\)的点. 那么新加入的叶子的深度的期望是未加入之前的期望+1,假设\(f_i\)为\(i\)个点的期望. 那么\(f_i=(f_{i-1}*({i-1})-f_{i-1}+2*(f_{i-1}+1))/i=f_{i-1}+2/i\) 含义就是平均的深度乘上点的个数等于深度总和,减…
洛谷 P1273 有线电视网(树形背包) 干透一道题 题面:洛谷 P1273 本质就是个背包.这道题dp有点奇怪,最终答案并不是dp值,而是最后遍历寻找那个合法且最优的\(i\)作为答案.dp值存的是当前状态下的成本,所以合法情况即当成本值大于等于0,不亏本的时候. 因为dp维护的是成本,并且按照背包思想,存在让这个用户接入和不让这个用户接入两种决策,类比背包,所以状态转移方程容易得到原始方程: \[ dp[s][i][j]=max \{ dp[s][i-1][j-k]+dp[w][size_w…
洛谷 P3177 [HAOI2015]树上染色 树形DP 题目描述 有一棵点数为 \(n\) 的树,树边有边权.给你一个在 \(0 \sim n\)之内的正整数 \(k\) ,你要在这棵树中选择 \(k\) 个点,将其染成黑色,并将其他 的 \(n−k\) 个点染成白色.将所有点染色后,你会获得黑点两两之间的距离加上白点两两之间的距离的和的受益.问受益最大值是多少. 输入格式 第一行包含两个整数 \(n,k\). 第二到 \(n\) 行每行三个正整数 \(fr,to,dis\)表示该树中存在一条…
2021.08.05 P1738 洛谷的文件夹(树形结构) P1738 洛谷的文件夹 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn) 重点: 1.树!! 题意: 给出n个网页路径,求1,2,-,i这i个路径中中有几个文件夹. 分析: 构造一棵树,类似于字典树,每次比较是否有这个文件夹,没有就加进去,有就沿着路经一直向下走. 代码如下: #include<cstdio> #include<algorithm> #include<iostream> #in…
题目: 洛谷 4769 博客页面左下角的嘴嘴瓜封神之战中的题目 分析: 一个排列交换次数为 \(\frac{1}{2}\sum_{i=1}^{n}|i-p_i|\) 的充要条件是这个排列不存在长度为 \(3\) 的下降序列(即:最长下降子序列不超过 \(2\) ),证明 感性理解如下: 考虑如果交换次数大于 \(\frac{1}{2}\sum_{i=1}^{n}|i-p_i|\) ,那么一定存在至少一个元素「绕路」了. 必要性 :「绕路」分为如下两种情况: 第一,某个元素的目标位置在它左侧,但它…
洛谷题目传送门 疯狂%%%几个月前就秒了此题的Tyher巨佬 借着这题总结一下决策单调性优化DP吧.蒟蒻觉得用数形结合的思想能够轻松地理解它. 首先,题目要我们求所有的\(p_i\),那么把式子变一下 \[p_i\ge a_j-a_i+\sqrt{|i-j|}\] \[p_i=\max\limits_{j=1}^n\{a_j+\sqrt{|i-j|}\}-a_i\] 绝对值看着很不爽,我们把它拆开 \[p_i=\max(\max_{j=1}^i\{a_j+\sqrt{i-j}\},\max_{j…
洛谷题目传送门 DP题怕是都要大大的脑洞...... 首先,时间那么大没用,直接离散化. 第一问还好.根据题意容易发现,当一堆活动的时间有大量重叠的时候,更好的办法是把它们全部安排到一边去.那么我们转移的时候也肯定是要一块一块地转移啦. 设\(tot_{l,r}\)为完全被包含在\(l-r\)时间内活动总数,直接\(O(n^3)\)暴力求就好了. 设\(pre_{i,j}\)为时间\(1-i\)内一边选\(j\)个时,另一边能选的最大值.枚举一块转移的话,我们的方程应该写成这样: \[pre_…