Whitening】的更多相关文章

PCA 给定一组二维数据,每列十一组样本,共45个样本点 -6.7644914e-01  -6.3089308e-01  -4.8915202e-01 ... -4.4722050e-01  -7.4778067e-01  -3.9074344e-01 ... 可以表示为如下形式: 本例子中的的x(i)为2维向量,整个数据集X为2*m的矩阵,矩阵的每一列代表一个数据,该矩阵的转置X' 为一个m*2的矩阵: 假设如上数据为归一化均值后的数据(注意这里省略了方差归一化),则数据的协方差矩阵Σ为 1/…
PCA的过程结束后,还有一个与之相关的预处理步骤,白化(whitening) 对于输入数据之间有很强的相关性,所以用于训练数据是有很大冗余的,白化的作用就是降低输入数据的冗余,通过白化可以达到(1)降低特征之间的相关性(2)所有特征同方差,白化是需要与平滑与PCA结合的,下边来看如何结合. 对于训练数据{},找到其所有特征组成的新基U,计算在新基的坐标 ,这里就会消除数据的相关性: 这个数据的协方差矩阵如下:  协方差矩阵对角元素的值为  和  ,且非对角线元素取值为0,课件不同纬度的特征之间是…
Exercise:PCA and Whitening 第0步:数据准备 UFLDL下载的文件中,包含数据集IMAGES_RAW,它是一个512*512*10的矩阵,也就是10幅512*512的图像 (a)载入数据 利用sampleIMAGESRAW函数,从IMAGES_RAW中提取numPatches个图像块儿,每个图像块儿大小为patchSize,并将提取到的图像块儿按列存放,分别存放在在矩阵patches的每一列中,即patches(:,i)存放的是第i个图像块儿的所有像素值 (b)数据去均…
接着上次的记,前面看了稀疏自编码.按照讲义,接下来是Vectorized, 翻译成向量化?暂且这么认为吧. Vectorized: 这节是老师教我们编程技巧了,这个向量化的意思说白了就是利用已经被优化了的数值运算来编程,矩阵的操作 尽量少用for循环,用已有的矩阵运算符来操作.这里只是粗略的看了下,有些小技巧还是不错的. PCA: PCA这个以前都接触过了,简单说就是两步: 1.协方差矩阵 其中x(i)是输入样本(假设已经均值化). 2.SVD分解,得出U向量.其中U向量的每列就是样本的新的方向…
Colored and White Process White Process White Process,又称为White Noise(白噪声),其中white来源于白光,寓意着PSD的平坦分布,white noise指的就是在PSD上具有平坦分布(常数)的随机过程.PSD是auto-correlation的傅里叶变换,PSD上为常数意味着auto-correlation是一个位于零点上的脉冲函数. 回顾auto-correlation的定义: $R_{xx}(\tau) = E\Big\{x…
转自:findbill 本文讨论白化(Whitening),以及白化与 PCA(Principal Component Analysis) 和 ZCA(Zero-phase Component Analysis) 的关系. 白化 什么是白化? 维基百科给出的描述是: 即对数据做白化处理必须满足两个条件: 使数据的不同维度去相关: 使数据每个维度的方差为1: 条件1要求数据的协方差矩阵是个对角阵:条件2要求数据的协方差矩阵是个单位矩阵. 为什么使用白化? 教程给出的解释是: 假设训练数据是图像,由…
PCA 给定一组二维数据,每列十一组样本,共45个样本点 -6.7644914e-01  -6.3089308e-01  -4.8915202e-01 ... -4.4722050e-01  -7.4778067e-01  -3.9074344e-01 ... 可以表示为如下形式: 本例子中的的x(i)为2维向量,整个数据集X为2*m的矩阵,矩阵的每一列代表一个数据,该矩阵的转置X' 为一个m*2的矩阵: 假设如上数据为归一化均值后的数据(注意这里省略了方差归一化),则数据的协方差矩阵Σ为 1/…
PCA的过程结束后,还有一个与之相关的预处理步骤,白化(whitening) 对于输入数据之间有很强的相关性,所以用于训练数据是有很大冗余的,白化的作用就是降低输入数据的冗余,通过白化可以达到(1)降低特征之间的相关性(2)所有特征同方差,白化是需要与平滑与PCA结合的,下边来看如何结合. 对于训练数据{},找到其所有特征组成的新基U,计算在新基的坐标 ,这里就会消除数据的相关性: 这个数据的协方差矩阵如下:  协方差矩阵对角元素的值为  和  ,且非对角线元素取值为0,课件不同纬度的特征之间是…
PCA: PCA的具有2个功能,一是维数约简(可以加快算法的训练速度,减小内存消耗等),一是数据的可视化. PCA并不是线性回归,因为线性回归是保证得到的函数是y值方面误差最小,而PCA是保证得到的函数到所降的维度上的误差最小.另外线性回归是通过x值来预测y值,而PCA中是将所有的x样本都同等对待. 在使用PCA前需要对数据进行预处理,首先是均值化,即对每个特征维,都减掉该维的平均值,然后就是将不同维的数据范围归一化到同一范围,方法一般都是除以最大值.但是比较奇怪的是,在对自然图像进行均值处理时…
Exercise:PCA and Whitening 习题链接:Exercise:PCA and Whitening pca_gen.m %%================================================================ %% Step 0a: Load data % Here we provide the code to load natural image data into x. % x will be a * matrix, where…