scikit-learn 是 Python 非常强大的一个做机器学习的包,今天介绍scikit-learn 里几个常用的分类器 SVM, KNN 和 logistic regression,用来做笑脸识别. 这里用到的是GENKI4K 这个数据库,每张图像先做一个人脸检测与剪切,然后提取HOG特征.这个数据库有 4000 张图,分成4组,做一个 cross validation,取平均值作为最终的识别率: import string, os, sys import numpy as np imp…
Tensor Flow 是一个采用数据流图(data flow graphs),用于数值计算的开源软件库.节点(Nodes)在图中表示数学操作,图中的线(edges)则表示在节点间相互联系的多维数据数组,即张量(tensor). 这是谷歌开源的一个强大的做深度学习的软件库,提供了C++ 和 Python 接口,下面给出用Tensor Flow 建立CNN 网络做笑脸识别的一个简单用例. 我们用到的数据库是GENKI4K,这个数据库有4000张图像,首先做人脸检测与剪切,将图像resize到 64…
Tensor Flow 是一个采用数据流图(data flow graphs),用于数值计算的开源软件库.节点(Nodes)在图中表示数学操作,图中的线(edges)则表示在节点间相互联系的多维数据数组,即张量(tensor). 这是谷歌开源的一个强大的做深度学习的软件库,提供了C++ 和 Python 接口,下面给出用Tensor Flow 建立MLP 网络做笑脸识别的一个简单用例.这个用例可以帮助我们熟悉如何利用tensorflow 建立MLP, 并且利用MLP做分类. 我们用到的数据库是G…
scikit-learn官网:http://scikit-learn.org/stable/ 通常情况下,一个学习问题会包含一组学习样本数据,计算机通过对样本数据的学习,尝试对未知数据进行预测. 学习问题一般可以分为: 监督学习(supervised learning) 分类(classification) 回归(regression) 非监督学习(unsupervised learning) 聚类(clustering) 监督学习和非监督学习的区别就是,监督学习中,样本数据会包含要预测的标签(…
转自:http://my.oschina.net/u/175377/blog/84420#OSC_h2_23 Scikit Learn: 在python中机器学习 Warning 警告:有些没能理解的句子,我以自己的理解意译. 翻译自:Scikit Learn:Machine Learning in Python 作者: Fabian Pedregosa, Gael Varoquaux 先决条件 Numpy, Scipy IPython matplotlib scikit-learn 目录 载入…
一.Scikit Learn中使用estimator三部曲 1. 构造estimator 2. 训练模型:fit 3. 利用模型进行预测:predict 二.模型评价 模型训练好后,度量模型拟合效果的常见准则有: 1.      均方误差(mean squared error,MSE): 2.      平均绝对误差(mean absolute error,MAE) 3.      R2 score:scikit learn线性回归模型的缺省评价准则,既考虑了预测值与真值之间的差异,也考虑了问题…
目录 5.3 使用LogisticRegressionCV进行正则化的 Logistic Regression 参数调优 一.Scikit Learn中有关logistics回归函数的介绍 1. 交叉验证 交叉验证用于评估模型性能和进行参数调优(模型选择).分类任务中交叉验证缺省是采用StratifiedKFold. sklearn.cross_validation.cross_val_score(estimator, X, y=None, scoring=None, cv=None, n_jo…
我们利用 TensorFlow 构造 CNN 做表情识别,我们用的是FER-2013 这个数据库, 这个数据库一共有 35887 张人脸图像,这里只是做一个简单到仿真实验,为了计算方便,我们用其中到 30000张图像做训练,5000张图像做测试集,我们建立一个3个convolution layer 以及 3个 pooling layer 和一个 FC layer 的CNN 来做训练. FER-2013 提供的是数据包括图像与label都存储在 .csv文件中,我们可以从 .csv文件里提取我们需…
机器学习相关概念 人工智能.机器学习和深度学习的关系 在探讨算法之前,我们先来谈一谈什么是机器学习.相信大家都听说过AlphaGo:2016年3月,AlphaGo与围棋世界冠军李世石进行围棋人机大战,最终以4:1获胜:2017年5月,AlphaGo与世界围棋冠军柯洁对战,以3:0获胜.AlphaGo其实就是一款围棋人工智能程序,其主要工作原理是“深度学习”.看一下下面这张图,来了解一下,人工智能.机器学习和深度学习的关系. 在20世纪五十年代,人工智能开始兴起,早期的人工智能还是让人兴奋的(虽然…
0.引言 介绍了如何生成数据,提取特征,利用sklearn的几种机器学习模型建模,进行手写体数字1-9识别. 用到的四种模型: 1. LR回归模型,Logistic Regression 2. SGD随机梯度下降模型,Stochastic Gradient Descent 3. SVC支持向量分类模型,Support Vector Classification 4. MLP多层神经网络模型,Multi-Layer Perceptron 主要内容:生成手写体随机数1-9,生成单个png分类存入指定…