#include <cstdio> #include <iostream> using namespace std; /*扩展gcd证明 由于当d = gcd(a,b)时: d = d1 = gcd(b,a%b); d1 = b1x1 + a%by1; d = ax+by = b1x1+a%by1.又由于a%b = a - a%b*b; 上式变形能够有 b1x1 + (a-b*a/b)*y1 = a*y1 + b*(x1-a/b*y1); 也就是是说ax+by = a*y1 + b…
有必要重新学一下扩展GCD emmmm. 主要是扩展GCD求解线性同余方程$ax≡b (mod p)$. 1.方程有解的充分必要条件:b%gcd(a,p)=0. 证明: $ax-py=b$ 由于求解整数解,ax是gcd(a,p)的整数倍,py也是,所以b是gcd(a,p)的整数倍. 2.扩展GCD模板 int exgcd(int a,int b,int &x,int &y) { if(b==0){x=1,y=0;return a;}//注意x,y的赋值. int gcd=exgcd(b,a…
codevs 1200 同余方程 2012年NOIP全国联赛提高组  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 钻石 Diamond 题目描述 Description 求关于 x 同余方程 ax ≡ 1 (mod b)的最小正整数解. 输入描述 Input Description 输入只有一行,包含两个正整数 a, b,用 一个 空格隔开. 输出描述 Output Description 输出只有一行包含一个正整数x0,即最小正整数解,输入数据保证一定有解. 样例输入…
模拟又炸了,我死亡 $exgcd$(扩展欧几里德算法)用于求$ax+by=gcd(a,b)$中$x,y$的一组解,它有很多应用,比如解二元不定方程.求逆元等等,这里详细讲解一下$exgcd$的原理. 了解$exgcd$算法前,需要$gcd$算法做铺垫.gcd,又称辗转相除法,用于计算两个整数 $a,b$ 的最大公约数. $gcd$函数的基本性质: $gcd(a,b)=gcd(b,a) $ $gcd(a,b)=gcd(-a,b) $ $gcd(a,b)=gcd(|a|,|b|)$ $gcd(a,b…
浅谈扩展欧几里得(扩展GCD)算法 本篇随笔讲解信息学奥林匹克竞赛中数论部分的扩展欧几里得算法.为了更好的阅读本篇随笔,读者最好拥有不低于初中二年级(这是经过慎重考虑所评定的等级)的数学素养.并且已经学会了学习这个算法的前置知识:欧几里得算法. 对于对欧几里得算法还有知识模糊的读者,请不要担心,这里为你准备了前导知识讲解,请移步至本蒟蒻的另两篇博客: 浅谈GCD 求最大公约数的方式 裴蜀定理 裴蜀定理的概念及证明 因为翻译版本的不同,这个定理可能还会被叫做贝祖定理.\(B\acute{e}zou…
gcd及扩展gcd可以用来求两个数的最大公因数,扩展gcd甚至可以用来求一次不定方程ax+by=c的解   辗转相除法与gcd 假设有两个数a与b,现在要求a与b的最大公因数,我们可以设 a=b*q+p 如果a是与b的最大公约数是gcd(a,b),那么b与p的最大公约数也是gcd(a,b) 即 gcd(a,b)=gcd(b,p)=gcd(b,a%b),然后我们令a=b,b=a%b,然后再进行以上步骤 以此类推,a与b的值会越来越小,直到某一时刻a变成了b的倍数,使得a%b=0,但是后来赋值使得a…
设两只青蛙跳了t步,则此时A的坐标:x+mt,B的坐标:y+nt.要使的他们在同一点,则要满足: x+mt - (y+nt) = kL (p是整数) 化成: (n-m)t + kL = x-y (L > 0)  则变成求解同余方程: (n-m)t ≡ (x-y) mod L  ,用扩展gcd解决. 且此时当 (x-y) % gcd(n-m,L) == 0 时才有解. 解同余方程ax+by = m时,假设我们已经求出了一对x0,y0,则 x0 = x*m/gcd(a,b) ,此时x0可能不是正整数…
扩展gcd算法 神tm ×度搜索exgcd 打到exg的时候出来ex咖喱棒... 球方程\(ax+by=\gcd(a,b)\)的一个解 如果\(b=0\),那么\(\gcd(a,b)=a\),取\(x=1,y=0\)即可 否则:显然\(\gcd(a,b)=\gcd(b,a\mod b)\) 那么可以递归球解\(bx+(a\mod b)y=\gcd(a,b)\)的解. 然后还是要推当前\(x,y\)的. 设\(bx+(a\mod b)y=\gcd(a,b)\)的解为\(x_0,y_0\), \(a…
d.对于这个循环, for (variable = A; variable != B; variable += C) statement; 给出A,B,C,求在k位存储系统下的循环次数. 例如k=4时,变量variable则只在0~15之间循环变化. s.扩展欧几里德求解模线性方程(线性同余方程). 设循环次数为x, 1.(A+C*x)mod 2^k=B. --> C*x=B-A(mod 2^k). (怎么变来的?) 2.C*x=B-A(mod 2^k). --> C*x+(2^k)*y=B-…
题目地址:POJ 1061 扩展GCD好难懂.. 看了半天.最终把证明什么的都看明确了. .推荐一篇博客吧(戳这里),讲的真心不错.. 直接上代码: #include <iostream> #include <cstdio> #include <string> #include <cstring> #include <stdlib.h> #include <math.h> #include <ctype.h> #inclu…