OpenGL 透视投影推导图解】的更多相关文章

有它足够了,转载自:http://blog.sina.com.cn/s/blog_73428e9a0102v920.html…
OPENGL固定图形渲染管线可以粗略地认为由下面的阶段衔接而成: 顶点颜色,光照,材质三个输入在光栅化前控制绘制管线的操作.光照和材质不能单独使用.顶点颜色,光源颜色,材质颜色都有alpha值,它们的alpha经过运算最后会保存在光栅化后的图元中,也就是说它们的影响也就在上图中红色虚线上方.输入是顶点(几何坐标.顶点颜色),矩阵,光照(光源,参数),材质,输出是片元. 纹理映射的过程的本质是根据纹理信息对片元的再处理,这个过程可能改变片元的alpha值.输入是片元,纹理(纹理坐标.各种参数),输…
gluPerspective这个函数指定了观察的视景体(frustum为锥台的意思,通常译为视景体)在世界坐标系中的具体大小,一般而言,其中的参数aspect应该与窗口的宽高比大小相同.比如说,aspect=2.0表示在观察者的角度中物体的宽度是高度的两倍,在视口中宽度也是高度的两倍,这样显示出的物体才不会被扭曲. gluPerspective NAME(函数名称) gluPerspective -- set up a perspective projection matrix (设置透视投影矩…
透视投影是3D固定流水线的重要组成部分,是将相机空间中的点从视锥体(frustum)变换到规则观察体(Canonical View Volume)中,待裁剪完毕后进行透视除法的行为.在算法中它是通过透视矩阵乘法和透视除法两步完成的.    透视投影变换是令很多刚刚进入3D图形领域的开发人员感到迷惑乃至神秘的一个图形技术.其中的理解困难在于步骤繁琐,对一些基础知识过分依赖,一旦对它们中的任何地方感到陌生,立刻导致理解停止不前.   没错,主流的3D APIs如OpenGL.D3D的确把具体的透视投…
http://daehgib.blog.163.com/blog/static/1861071422011579551134/ 透视投影是3D固定流水线的重要组成部分,是将相机空间中的点从视锥体(frustum)变换到规则观察体(Canonical View Volume)中,待裁剪完毕后进行透视除法的行为.在算法中它是通过透视矩阵乘法和透视除法两步完成的. 透视投影变换是令很多刚刚进入3D图形领域的开发人员感到迷惑乃至神秘的一个图形技术.其中的理解困难在于步骤繁琐,对一些基础知识过分依赖,一旦…
如果要得到pose视图,除非有精密的测量方法,否则进行大量的样本采集时很耗时耗力的.可以采取一些取巧的方法,正如A Survey on Partial of 3d shapes,描述的,可以利用已得到的3D模型,利用投影的方法 (page10-透视投影或者正射投影),自动得到精确的3D单向视图. 其中的遇到了好几个难题:透视投影的视角问题:单侧面的曲面补全问题(曲面插值问题):pose特征的描述性问题. 一篇文章看完视觉及相关通略. 先普及一下基础知识: 一:图像处理.计算机图形学.计算机视觉和…
概述 透视投影 正交投影 概述 计算机显示器是一个2D平面.OpenGL渲染的3D场景必须以2D图像方式投影到计算机屏幕上.GL_PROJECTION矩阵用于该投影变换.首先,它将所有定点数据从观察坐标转换到裁减坐标.接着,这些裁减坐标通过除以w分量的方式转换到归一化设备坐标(NDC). 因此,我们需要记住一点:裁减变换(视锥剔除)与NDC变换都保存在GL_PROJECTION矩阵中.下述章节描述如何从6个限定参数(左.右.下.上.近平面.远平面)构建投影矩阵. 注意,视锥剔除(裁减)在裁减坐标…
一.OpenGL与3D图形世界1.1.OpenGL使人们进入三维图形世界 我们生活在一个充满三维物体的三维世界中,为了使计算机能精确地再现这些物体,我们必须能在三维空间描绘这些物体.我们又生活在一个充满信息的世界中,能否尽快地理解并运用这些信息将直接影响事业的成败,所以我们需要用一种最直接的形式来表示这些信息. 最近几年计算机图形学的发展使得三维表现技术得以形成,这些三维表现技术使我们能够再现三维世界中的物体,能够用三维形体来表示复杂的信息,这种技术就是可视化(Visualization)技术.…
原文:http://blog.chinaunix.net/uid-20638550-id-1909183.html  分类: 一.OpenGL与3D图形世界 1.1.OpenGL使人们进入三维图形世界 我们生活在一个充满三维物体的三维世界中,为了使计算机能精确地再现这些物体,我们必须能在三维空间描绘这些物体.我们又生活在一个充满信息的世界中,能否尽快地理解并运用这些信息将直接影响事业的成败,所以我们需要用一种最直接的形式来表示这些信息. 最近几年计算机图形学的发展使得三维表现技术得以形成,这些三…
转自:http://blog.sina.com.cn/s/blog_957b9fdb0100zesv.html 为了说明在三维物体到二维图象之间,需要经过什么样的变换,我们引入了相机(Camera)模拟的方式,假定用相机来拍摄这个世界,那么在相机的取景器中,就存在人眼和现实世界之间的一个变换过程.      第一步:视点变换(如同拍照的时候设置相机的位置)          在拍照的时候,我们首先要将相机置于三角架上,让它对准三维场景.在OpenGL中调整视点的位置就像是是要放置相机一样,我们称…
OpenGL中的渲染管线包括:顶点着色器(vertex shader).细分着色器(里面包含两种:细分控制着色器和细分控制着色器)(tessellation shader).几何着色器.光栅化及片元着色器(fragment shader),其中并不是每一次渲染图形都需要用到所有的着色器,但是,顶点着色器和片元着色器是必须的. 下面是OpenGL渲染管线的图解及每个着色器的作用: 其中,顶点着色器和片元着色器是OpenGL整个渲染管线必须要有的过程,其他的着色器可以根据需要进行选择.…
OpenGL中不设置模型,投影,视口,所绘制的几何图形的坐标只能是-1到1(X轴向右,Y轴向上,Z轴垂直屏幕向外). 产生目标场景的过程类似于用照相机进行拍照: (1)把照相机固定在三角架上,并让他对准场景 从不同位置观察场景(视图变换) (2)对场景进行安排,使各个物体在照片中的位置是我们所希望的 移动,旋转或者放大缩小场景中的物体(模型变换) (3)选择照相机镜头,并调整放大倍数(调焦) 显示物体时,可以选择物体是如何投影到屏幕上(投影变换) (4)确定照片的大小,放大照片还是缩小照片 把图…
OpenGL坐标变换专题(转)   OpenGL通过相机模拟.可以实现计算机图形学中最基本的三维变换,即几何变换.投影变换.裁剪变换.视口变换等,同时,OpenGL还实现了矩阵堆栈等.理解掌握了有关坐标变换的内容,就算真正走进了精彩地三维世界. 一.OpenGL中的三维物体的显示 (一)坐标系统 在现实世界中,所有的物体都具有三维特征,但计算机本身只能处理数字,显示二维的图形,将三维物体及二维数据联系在一起的唯一纽带就是坐标. 为了使被显示的三维物体数字化,要在被显示的物体所在的空间中定义一个坐…
八.OpenGL变换 OpenGL变换是本篇的重点内容,它包含计算机图形学中最主要的三维变换,即几何变换.投影变换.裁剪变换.视口变换,以及针对OpenGL的特殊变换概念理解和使用方法,如相机模拟.矩阵堆栈等. 学好了这章,才開始真正走进三维世界. 8.1.从三维空间到二维平面 8.1.1 相机模拟 在真实世界里,全部的物体都是三维的. 可是.这些三维物体在计算机世界中却必须以二维平面物体的形式表现出来. 那么,这些物体是如何从三维变换到二维的呢?以下我们採用相机(Camera)模拟的方式来讲述…
OpenGL投影矩阵 概述 透视投影 正交投影 概述 计算机显示器是一个2D平面.OpenGL渲染的3D场景必须以2D图像方式投影到计算机屏幕上.GL_PROJECTION矩阵用于该投影变换.首先,它将所有定点数据从观察坐标转换到裁减坐标.接着,这些裁减坐标通过除以w分量的方式转换到归一化设备坐标(NDC). 因此,我们需要记住一点:裁减变换(视锥剔除)与NDC变换都保存在GL_PROJECTION矩阵中.下述章节描述如何从6个限定参数(左.右.下.上.近平面.远平面)构建投影矩阵. 注意,视锥…
OpenGL通过摄像机的模拟.要实现一个三维计算机图形重大转变,这是几何变换(模型转换-查看转型(两者统称为几何变换)).投影.作物转型.口变换等.同一时候,OpenGL还实现了矩阵堆栈等.理解掌握了有关坐标变换的内容,就算真正走进了精彩地三维世界. 坐标系统 OpenGL使用的是右手笛卡尔坐标系统,Z正轴垂直屏幕向外,X正轴从左到右.Y正轴从下到上. 世界坐标系:在现实世界中,全部的物体都具有三维特征,但计算机本身仅仅能处理数字.显示二维的图形,将三维物体及二维数据联系在一起的唯一纽带就是坐标…
如你所见.这篇就是要讲下使用transformjs制作星球的过程.你也可以无视文章,直接去看源码和在线演示: 源码 | 在线演示 代码100行多一点,直接看也没有什么压力.下面分几步讲解下. 生成球上点坐标 设球心为 (a,b,c),半径为r, 则球的标准方程为 (x-a)²+(y-b)²+(z-c)²=r² 这里假设球心的(0,0,0),则: 标准方程为 x²+y²+z²=r² 因为可以渲染的时候再把球的本地坐标转为世界坐标进行位移,所以球心(0,0,0)便可以. function rando…
最近这一个月的闲暇时间在边学习<3D编程大师技巧>边做自己的Soft Renderer,一个月下来总算有了个“基本原型”的样子.主要是在编写图形管线的过程式代码,简单明了为第一个阶段的目标. 今天加入了“透视校正纹理映射”这个必不可少的图形基本特性,计算公式抠自<Real-Time Rendering>2th的第十五章“透视校正插值”一节的引用文章Blinn大拿的<W Pleasure W Fun>.即对UV纹理坐标进行所谓的双曲线插值...用起来倒是很简单,大致意思就…
http://wenku.baidu.com/link?url=wDkyQR9fDI_tZas1BlMRUnNNoKwiQDygltm2wWxRr_sDwcDB51_QCDfR4Gb5wYrIUZ_tYxpjhZcquYeBgOC2Ce5tH-I6npzKEqtHZ9zFNt7  转载自:http://wenku.baidu.com/view/f478d71aa8114431b90dd870.html         这几个参量,也可以根据视野( FOV – Field Of View )参量来…
Point: 渲染渲染,神奇的渲染!! ———————————————— 只要你走的足够远,你肯定能到达某个地方. 1"GPU编程" History ————————— //由于笔记我是由印象里面转移过来的,排版上请见谅 想要实现自己的光线?想要渲染出自己的正方体!?那么没错了. 我们需要的东西不是C语言,而是英伟达所提出的 Cg 语言了. GPU 概念于20世纪70年代末80年代初被提出,采用单片集成电路作为图形芯片.[具有高并行结构,更多的ALU] 它能够很快的进行几张图片的合成和…
[Realtime Rendering 1.1] 1.A linear transform is one that preserves vector addition and scalar multiplication. Specifically, 2.Combining linear transforms and translations can be done using an affine transform. An affine transform is one that perform…
一.非真实的世界 与之前几篇文章不同的是,这里要画12个三角形,这个12个三角形构造一个方形棱柱(这里为长方体).棱柱的每个四边形表面由两个三角形组成.这两个三角形其中的一条边重合,而且它们的六个顶点的颜色相同,因此每个四边形表面都有唯一的颜色.下面的顶点着色器我们已经非常熟悉,它传递颜色到片段着色器,定义了一个uniform的二维向量offset,该变量用来改变顶点位置的x和y坐标值. ? 1 2 3 4 5 6 7 8 9 10 11 12 const std::string strVert…
原文作者:aircraft 原文链接:https://www.cnblogs.com/DOMLX/p/12166896.html 为什么引入齐次坐标的变换矩阵可以表示平移呢? - Yu Mao的回答 - 知乎 https://www.zhihu.com/question/26655998/answer/43847213为什么引入齐次坐标的变换矩阵可以表示平移呢? - Yu Mao的回答 - 知乎 https://www.zhihu.com/question/26655998/answer/438…
视图变换在opengl中,视图变换的输入是:(1)眼睛位置(或者说相机位置)eys:(2)眼睛朝向的中心center,(就是眼睛朝哪里看);(3)头的方向up.任何一点经过视图变换后都会转化到眼睛坐标系下.具体地说,眼睛坐标系的三个轴分别是:(1)z轴: F=center-eye;(要归一化)(2)x轴: S=cross(F,up);(这里是叉乘,也要归一化)(3)y轴: U=cross(S,F).此时,eye的位置就是原点了.那么对于任意一点P(px,py,pz),在新坐标下的三个点分别是:p…
博客地址 : http://blog.csdn.net/shulianghan/article/details/46680803 源代码下载 : http://download.csdn.net/detail/han1202012/8903437 正交投影效果 :  透视投影效果 :  一. 投影简单介绍 1. 摄像机位置 摄像机參数 : -- 摄像机位置 : 摄像机的 三维坐标位置 x, y, z 坐标; -- 观察方向 : 摄像机镜头的朝向, 是一个三维向量, 指向一个三维坐标方向; --…
本文主要是对红宝书(第八版)第五章中给出的透视投影矩阵和正交投影矩阵做一个简单推导.投影矩阵的目的是:原始点P(x,y,z)对应后投影点P'(x',y',z')满足x',y',z'∈[-1,1]. 一.透视投影                                                                                                                     下图为透视投影的视锥体: 注:上图中忘了标注了,远裁剪平…
摘要 本文是对 Andrew Ng 在 Coursera 上的机器学习课程中 Backpropagation Algorithm 一小节的延伸.文章分三个部分:第一部分给出一个简单的神经网络模型和 Backpropagation(以下简称 BP)算法的具体流程.第二部分以分别计算第一层和第二层中的第一个参数(parameters,在神经网络中也称之为 weights)的梯度为例来解释 BP 算法流程,并给出了具体的推导过程.第三个部分采用了更加直观的图例来解释 BP 算法的工作流程. 注:1.…
在opengl中,我们可以用少许的参数来描述一个曲线,其中贝塞尔曲线算是一种很常见的曲线控制方法,我们先来看维基百科里对贝塞尔曲线的说明: 线性贝塞尔曲线 给定点P0.P1,线性贝塞尔曲线只是一条两点之间的直线.这条线由下式给出: 且其等同于线性插值. 二次方贝塞尔曲线 二次方贝塞尔曲线的路径由给定点P0.P1.P2的函数B(t)追踪: . TrueType字体就运用了以贝塞尔样条组成的二次贝塞尔曲线. 一些关于参数曲线的术语,有 即多项式 又称作n阶的伯恩斯坦基底多项式,定义00 = 1. 点…
游戏开发中经常使用到OpenGL,当然很多人都喜欢直接用现有的游戏引擎,但相信了解的更多对你没有坏处 安卓开发中,采用的OpenGL ex2的规范,前几天看了下这个规范,整体上难度比1.0规范难度加大了很多. 全面采用shader进行开发,不在是以前的固定管线方式了.是个很大的提升,估计在速度上也会有很大的提升. (本人还没有亲自做这个实验,到底快多少)但是难度却是比之前大了很多,你至少要自己编写shader代码,对 数学有很大的要求了,废话不多说,进入正题. 首先建立一个andriod的项目,…
把物体从世界坐标系转化到视点坐标系的矩阵称为视图矩阵. 下面我们先看下opengl视图矩阵的推导过程: 假设视点或camera的局部坐标系为UVN,UVN分别指向右方.上方和后方从而构成右手坐标系,视点则处于局部坐标系的原点位置. 就如opengl的函数OpenGL的gluLookAt(eyex, eyey, eyez, lookatx, lookaty, lookatz, upx, upy, upz)一样,给定视点.观察点.以及up向量,现在我们来求得视图矩阵. 1.首先我们来求得N = ey…