L1-057 PTA使我精神焕发】的更多相关文章

以上是湖北经济学院同学的大作.本题就请你用汉语拼音输出这句话. 输入格式: 本题没有输入. 输出格式: 在一行中按照样例输出,以惊叹号结尾. 输入样例: 无 输出样例: PTA shi3 wo3 jing1 shen2 huan4 fa1 !     本菜鸡来补题解了,被今年天梯赛的字符串模拟题给弄自闭了,虽然不难但是写起来是真的麻烦,用string写还行,用c语言的字符数组写那是真的会炸,所以说还是string好用......     #include<iostream> using nam…
机器学习中的范数规则化之(一)L0.L1与L2范数 zouxy09@qq.com http://blog.csdn.net/zouxy09 今天我们聊聊机器学习中出现的非常频繁的问题:过拟合与规则化.我们先简单的来理解下常用的L0.L1.L2和核范数规则化.最后聊下规则化项参数的选择问题.这里因为篇幅比较庞大,为了不吓到大家,我将这个五个部分分成两篇博文.知识有限,以下都是我一些浅显的看法,如果理解存在错误,希望大家不吝指正.谢谢. 监督机器学习问题无非就是"minimizeyour error…
http://blog.csdn.net/zouxy09/article/details/24971995 机器学习中的范数规则化之(一)L0.L1与L2范数 zouxy09@qq.com http://blog.csdn.net/zouxy09 今天我们聊聊机器学习中出现的非常频繁的问题:过拟合与规则化.我们先简单的来理解下常用的L0.L1.L2和核范数规则化.最后聊下规则化项参数的选择问题.这里因为篇幅比较庞大,为了不吓到大家,我将这个五个部分分成两篇博文.知识有限,以下都是我一些浅显的看法…
L0.L1与L2范数.核范数 今天我们聊聊机器学习中出现的非常频繁的问题:过拟合与规则化.我们先简单的来理解下常用的L0.L1.L2和核范数规则化.最后聊下规则化项参数的选择问题.这里因为篇幅比较庞大,为了不吓到大家,我将这个五个部分分成两篇博文.知识有限,以下都是我一些浅显的看法,如果理解存在错误,希望大家不吝指正.谢谢. 监督机器学习问题无非就是"minimizeyour error while regularizing your parameters",也就是在规则化参数的同时最…
机器学习中的范数规则化之(一)L0.L1与L2范数 zouxy09@qq.com http://blog.csdn.net/zouxy09 今天我们聊聊机器学习中出现的非常频繁的问题:过拟合与规则化.我们先简单的来理解下常用的L0.L1.L2和核范数规则化.最后聊下规则化项参数的选择问题.这里因为篇幅比较庞大,为了不吓到大家,我将这个五个部分分成两篇博文.知识有限,以下都是我一些浅显的看法,如果理解存在错误,希望大家不吝指正.谢谢. 监督机器学习问题无非就是“minimizeyour error…
\(L1\)正则化及其推导 在机器学习的Loss函数中,通常会添加一些正则化(正则化与一些贝叶斯先验本质上是一致的,比如\(L2\)正则化与高斯先验是一致的.\(L1\)正则化与拉普拉斯先验是一致的等等,在这里就不展开讨论)来降低模型的结构风险,这样可以使降低模型复杂度.防止参数过大等.大部分的课本和博客都是直接给出了\(L1\)正则化的解释解或者几何说明来得到\(L1\)正则化会使参数稀疏化,本来会给出详细的推导. \(L1\)正则化 大部分的正则化方法是在经验风险或者经验损失\(L_{emp…
机器学习中的范数规则化之(一)L0.L1与L2范数 博客的学习笔记,对一些要点进行摘录.规则化也有其他名称,比如统计学术中比较多的叫做增加惩罚项:还有现在比较多的正则化. -------------------------------------------- 一.正则化背景 监督机器学习问题无非就是"minimizeyour error while regularizing your parameters",也就是在规则化参数的同时最小化误差.最小化误差是为了让我们的模型拟合我们的训…
机器学习中的范数规则化之(一)L0.L1与L2范数 zouxy09@qq.com http://blog.csdn.net/zouxy09 今天我们聊聊机器学习中出现的非常频繁的问题:过拟合与规则化.我们先简单的来理解下常用的L0.L1.L2和核范数规则化.最后聊下规则化项参数的选择问题.这里因为篇幅比较庞大,为了不吓到大家,我将这个五个部分分成两篇博文.知识有限,以下都是我一些浅显的看法,如果理解存在错误,希望大家不吝指正.谢谢. 监督机器学习问题无非就是"minimizeyour error…
第十五节L1和L2正则几何解释和Ridge,Lasso,Elastic Net回归 上一节中我们讲解了L1和L2正则的概念,知道了L1和L2都会使不重要的维度权重下降得多,重要的维度权重下降得少,引入L1正则会使不重要的w趋于0(达到稀疏编码的目的),引入L2正则会使w的绝对值普遍变小(达到权值衰减的目的).本节的话我们从几何角度再讲解下L1和L2正则的区别. L1正则是什么?|W1|+|W2|,假如|W1|+|W2|=1,也就是w1和w2的绝对值之和为1 .让你画|W1|+|W2|=1的图形,…
                                                                           第十四节过拟合解决手段L1和L2正则 第十三节中,我们讲解了过拟合的情形,也就是过度的去拟合训练集上的结果了,反倒让你的模型太复杂.为了去解决这种现象,我们提出用L1,L2正则去解决这种问题. 怎么把正则应用进去?我们重新审视目标函数,以前我们可以理解目标函数和损失函数是一个东西.而有正则的含义之后,目标函数就不再是损失函数了,而是损失函数加惩罚项…