spark生成大宽表的parquet性能优化】的更多相关文章

1.  背景介绍 将一份数据量很大的用户属性文件解析成结构化的数据供查询框架查询剖析,其中用户属性包含用户标识,平台类型,性别,年龄,学历,兴趣爱好,购物倾向等等,大概共有七百个左右的标签属性.为了查询框架能够快速查询出有特定标签的人群,将最终的存储结果定义为了将七百个左右的标签属性展平存储为parquet文件,这样每个标签属性对于用户而言只有存在和不存在两种情况. 2. 第一版实现过程 第一步,将用户所有标签标识作为一个资源文件保存到spark中,并读取该资源文件的标签标识为一个标签集合(定义…
Spark Tungsten揭秘 Day1 jvm下的性能优化 今天开始谈下Tungsten,首先我们需要了解下其背后是符合了什么样的规律. jvm对分布式天生支持 整个Spark分布式系统是建立在分布式jvm基础上的,jvm非常伟大的一点在于把不同机器的计算能力联合起来了,jvm也把不同机器的存储能力连接起来了. jvm是怎么做到这一点的,jvm本身就是一个软件,有自己的通讯方式以及自己的一套协议,在进行java或者scala开发的时候,就支持了一个最重要的设计模式:代理模式,基于代理模式可以…
这篇文章,我们来看看,Hadoop的HDFS分布式文件系统的文件上传的性能优化. 首先,我们还是通过一张图来回顾一下文件上传的大概的原理. 由上图所示,文件上传的原理,其实说出来也简单. 比如有个TB级的大文件,太大了,HDFS客户端会给拆成很多block,一个block就是128MB. 这个HDFS客户端你可以理解为是云盘系统.日志采集系统之类的东西. 比如有人上传一个1TB的大文件到网盘,或者是上传个1TB的大日志文件. 然后,HDFS客户端把一个一个的block上传到第一个DataNode…
UI性能测试 性能优化都需要有一个目标,UI的性能优化也是一样.你可能会觉得“我的app加载很快”很重要,但我们还需要了解终端用户的期望,是否可以去量化这些期望呢?我们可以从人机交互心理学的角度来考虑这个问题.研究表明,0-100毫秒以内的延迟对人来说是瞬时的,100-300毫秒则会感觉明显卡顿,300-1000毫秒会让用户觉得“手机卡死了”,超过1000ms就会让用户想去干别等事情了. 这是人类心理学最基础的理论,我们可以从这个角度去优化页面/view/app的加载时间. Ilya Grigo…
距离上次的博客已经有15个多月了,感慨有些事情还是需要坚持,一旦停下来很有可能就会停很久或者从此再也不会坚持.但我个人一直还坚持认为属于技术狂热份子,且喜欢精益求精的那种.最近遇到两个和数据迁移相关的项目,均遇到需要性能优化的问题,这里拿第二个项目的一个小优化过程与大家分享,技术并不高深,我注重的是解决问题的过程.我的方案是有业务背景以及技术背景限制的,不一定适合其它项目,优化是相对的. 业务场景:我们需要迁移一批老的合同订单数据,其有一个合同的订单数为519条,迁移到新表中会涉及到主要的4个表…
   修改kettleDB连接设置 1. 增加批量写的速度:useServerPrepStmts=false  rewriteBatchedStatements=true  useCompression=true2. 增加读的速度:useServerPrepStmts=truecachePrepStmts=true 参数说明: 1)useCompression=true,压缩数据传输,优化客户端和MySQL服务器之间的通信性能. 2)rewriteBatchedStatements=true …
直接让代码了,对比看看就了解了 当然,这种情况比较适合提取字段较多的情况,要酌情而定 性能较差的: WITH #temp AS                       (                                    Select column1,column2,column3,column4,column5,column6,column7,column8,column9,column10, row_number() over (Order by column100…
这里根据网络上各位大神已经总结的知识内容做一个大汇总,作为记录,方便后续“温故知新”. 性能指标: (1)使用流畅度:  图片处理器每秒刷新的帧数(FPS),可用来指示页面是否平滑的渲染.高的帧率可以得到更流畅,更逼真的动画,不过帧率达到60fps以上,人眼主观感受到的差别就不大了.所以以60fps作为衡量标准,即要求每一帧刷新的时间小于16ms,这样才能保证滑动中平滑的流畅度. (2)内存使用情况:  在android系统中,每个APP进程除了同其他进程共享(shared dirty)外,还独…
注:目录表 <Oracle12c 性能优化攻略:攻略目录表> 问题描述 你刚开始使用oracle数据库,并且学习了一些关于可用的各种表类型的知识.例如:可以在堆组织表.索引组织表等之间支出选择.你要创建一个数据库应用,并且需要确定它所使用的表类型 解决方案 工作原理: ------------------------------------------------------------------------------------------------------------------…
硬件选择 Elasticsearch(后文简称 ES)的基础是 Lucene,所有的索引和文档数据是存储在本地的磁盘中,具体的路径可在 ES 的配置文件../config/elasticsearch.yml中配置,如下: # ----------------------------------- Paths ------------------------------------ # # Path to directory where to store the data (separate mu…
背景 字节跳动 Data Catalog 产品早期,是基于 LinkedIn Wherehows 进行二次改造,产品早期只支持 Hive 一种数据源.后续为了支持业务发展,做了很多修修补补的工作,系统的可维护性和扩展性变得不可忍受.比如为了支持数据血缘能力,引入了字节内部的图数据库 veGraph,写入时,需要业务层处理 MySQL.ElasticSearch 和 veGraph 三种存储,模型也需要同时理解关系型和图两种.更多的背景可以参照之前的文章. 新版本保留了原有版本全量的产品能力,将存…
mysql性能优化是一个很大的命题,这里只记录一下近期的一些小经验. 曾经以为看了点create table时加index的语法就觉得自己知道怎么做mysql优化了,后来又看了点介绍mysql索引底层实现的文章,就感觉自己已经得到mysql精髓了一样.. 直到最近因为工作需要认真去提升大数据量下的性能的时候,才发现,自己以前简直跟从三到万里学了一二三就嚷嚷“儿得已”的三岁小儿一样的可笑.. 一.这里简单引用些资料介绍一些优化工具 神器1 https://dev.mysql.com/doc/ref…
简介 文中内容均为阅读前辈的文章所整理而来,参考文章已在最后全指明 本文分为上下两篇: 上篇:MySQL 的 SQL 执行分析 下篇:MySQL 性能优化 下面为下篇内容,分为以下部分: 一.创建表时的性能优化 二.设计表时的性能优化 三.优化 SQL 语句 四.其它 一.创建表时的性能优化 1. 永远为每张表设置一个 ID 每张表都应该设置一个 ID 字段为主键,该主键应为 INT 或 UNSIGNED 类型,并设置上自动增加的 AUTO_INCREMENT 标志.因为使用 VARCHAR 类…
浏览器工作原理:https://www.cnblogs.com/thonrt/p/10008220.html 浏览器渲染原理: https://www.cnblogs.com/thonrt/p/10008742.html 基于上面这两篇文章,我们可以把web性能优化分为两大方面: 网络传输性能优化 页面渲染性能优化 本文主要介绍网络传输性能优化. 本人总结网络传输性能优化主要有以下几个点: 减少请求数 减小请求资源体积 提升网络传输速率 下面我们来逐一击破. 1.资源打包和压缩 想要实现首屏渲染…
第一章 Spark 性能调优 1.1 常规性能调优 1.1.1 常规性能调优一:最优资源配置 Spark性能调优的第一步,就是为任务分配更多的资源,在一定范围内,增加资源的分配与性能的提升是成正比的,实现了最优的资源配置后,在此基础上再考虑进行后面论述的性能调优策略. 资源的分配在使用脚本提交Spark任务时进行指定,标准的Spark任务提交脚本如代码清单2-1所示: 代码清单2-1 标准Spark提交脚本 /usr/opt/modules/spark/bin/spark-submit \ --…
基本信息 作者: 高彦杰 丛书名:大数据技术丛书 出版社:机械工业出版社 ISBN:9787111483861 上架时间:2014-11-5 出版日期:2014 年11月 开本:16开 页码:255 版次:1-1 所属分类: 计算机 > 数据库 > 数据库存储与管理 编辑推荐 根据最新技术版本,系统.全面.详细讲解Spark的各项功能使用.原理机制.技术细节.应用方法.性能优化,已经BDAS生态系统的相关技术. 内容简介 书籍计算机书籍 这是一本依据最新技术版本,系统.全面.详细讲解Spark…
内容简介 <Spark大数据处理:技术.应用与性能优化>根据最新技术版本,系统.全面.详细讲解Spark的各项功能使用.原理机制.技术细节.应用方法.性能优化,以及BDAS生态系统的相关技术. 作为一个基于内存计算的大数据并行计算框架,Spark不仅很好地解决了数据的实时处理问题,而且保证了高容错性和高可伸缩性.具体来讲,它有如下优势: 打造全栈多计算范式的高效数据流水线 轻量级快速处理 易于使用,支持多语言 与HDFS等存储层兼容 社区活跃度高 -- Spark已经在全球范围内广泛使用,无论…
内容简介 <Spark大数据处理:技术.应用与性能优化>根据最新技术版本,系统.全面.详细讲解Spark的各项功能使用.原理机制.技术细节.应用方法.性能优化,以及BDAS生态系统的相关技术. 作为一个基于内存计算的大数据并行计算框架,Spark不仅很好地解决了数据的实时处理问题,而且保证了高容错性和高可伸缩性.具体来讲,它有如下优势: 打造全栈多计算范式的高效数据流水线 轻量级快速处理 易于使用,支持多语言 与HDFS等存储层兼容 社区活跃度高 -- Spark已经在全球范围内广泛使用,无论…
需求: 小表数据量20w条左右,大表数据量在4kw条左右,需要根据大表筛选出150w条左右的数据并关联更新小表中5k左右的数据. 性能问题: 对筛选条件中涉及的字段加index后,如下常规的update语句仍耗时半小时左右. UPDATE WMOCDCREPORT.DM_WM_TRADINGALL A SET ( A.RELATIONSHIPNO, A.PACKAGE ) = (SELECT B.RELATIONSHIPNO, CASE ' ' ' ') THEN 'BC' ') THEN 'P…
Spark有几种部署的模式,单机版.集群版等等,平时单机版在数据量不大的时候可以跟传统的java程序一样进行断电调试.但是在集群上调试就比较麻烦了...远程断点不太方便,只能通过Log的形式,进行分析,利用spark ui做性能调整和优化. 那么本篇就介绍下如何利用Ui做性能分析,因为本人的经验也不是很丰富,所以只能作为一个入门的介绍. Spark UI入口 如果是单机版本,在单机调试的时候输出信息中已经提示了UI的入口: 17/02/26 13:55:48 INFO SparkEnv: Reg…
转载自http://www.csdn.net/article/2013-07-08/2816149 Spark已正式申请加入Apache孵化器,从灵机一闪的实验室“电火花”成长为大数据技术平台中异军突起的新锐.本文主要讲述Spark的设计思想.Spark如其名,展现了大数据不常见的“电光石火”.具体特点概括为“轻.快.灵和巧”. 轻:Spark 0.6核心代码有2万行,Hadoop 1.0为9万行,2.0为22万行.一方面,感谢Scala语言的简洁和丰富表达力:另一方面,Spark很好地利用了H…
一.工作原理剖析 1.图解 二.性能优化 1.设置Shuffle过程中的并行度:spark.sql.shuffle.partitions(SQLContext.setConf()) 2.在Hive数据仓库建设过程中,合理设置数据类型,比如能设置为INT的,就不要设置为BIGINT.减少数据类型导致的不必要的内存开销. 3.编写SQL时,尽量给出明确的列名,比如select name from students.不要写select *的方式. 4.并行处理查询结果:对于Spark SQL查询的结果…
[序言] Spark 基于内存的基本类型 (primitive)为一些应用程序带来了 100 倍的性能提升.Spark 允许用户程序将数据加载到 集群内存中用于反复查询,非常适用于大数据和机器学习. 目前,Spark 已经超越 Spark 核心,发展到了 Spark streaming.SQL.MLlib. GraphX.SparkR 等模块. Spark 对曾经引爆大数据产业革命的 Hadoop MapReduce 的改进主要体现在这几个方面: 1.Spark 速度更快: 2.Spark 丰富…
性能调优相关的原理讲解.经验总结: 掌握一整套Spark企业级性能调优解决方案:而不只是简单的一些性能调优技巧. 针对写好的spark作业,实施一整套数据倾斜解决方案:实际经验中积累的数据倾斜现象的表现,以及处理后的效果总结. 调优前首先要对spark的作业流程清楚: Driver到Executor的结构: Master: Driver |-- Worker: Executor |-- job |-- stage |-- Task Task 一个Stage内,最终的RDD有多少个partitio…
版本:V2.0 第一章       Spark 性能调优 1.1      常规性能调优 1.1.1   常规性能调优一:最优资源配置 Spark性能调优的第一步,就是为任务分配更多的资源,在一定范围内,增加资源的分配与性能的提升是成正比的,实现了最优的资源配置后,在此基础上再考虑进行后面论述的性能调优策略. 资源的分配在使用脚本提交Spark任务时进行指定,标准的Spark任务提交脚本如代码清单2-1所示: 代码清单2-1 标准Spark提交脚本 /usr/opt/modules/spark/…
Spark Core 1. 概述 Spark 是一种基于内存的快速.通用.可扩展的大数据分析计算引擎 1.1 Hadoop vs Spark 上面流程对应Hadoop的处理流程,下面对应着Spark的处理流程 Hadoop Hadoop 是由 java 语言编写的,在分布式服务器集群上存储海量数据并运行分布式 分析应用的开源框架 作为 Hadoop 分布式文件系统,HDFS 处于 Hadoop 生态圈的最下层,存储着所有的 数 据 , 支持着 Hadoop的所有服务 . 它的理论基础源于Goog…
前言 数据倾斜调优 调优概述 数据倾斜发生时的现象 数据倾斜发生的原理 如何定位导致数据倾斜的代码 查看导致数据倾斜的key的数据分布情况 数据倾斜的解决方案 解决方案一:使用Hive ETL预处理数据 解决方案二:过滤少数导致倾斜的key 解决方案三:提高shuffle操作的并行度 解决方案四:两阶段聚合(局部聚合+全局聚合) 解决方案五:将reduce join转为map join 解决方案六:采样倾斜key并分拆join操作 解决方案七:使用随机前缀和扩容RDD进行join 解决方案八:多…
转自:http://tech.meituan.com/spark-tuning-basic.html?from=timeline 前言 开发调优 调优概述 原则一:避免创建重复的RDD 原则二:尽可能复用同一个RDD 原则三:对多次使用的RDD进行持久化 原则四:尽量避免使用shuffle类算子 原则五:使用map-side预聚合的shuffle操作 原则六:使用高性能的算子 原则七:广播大变量 原则八:使用Kryo优化序列化性能 原则九:优化数据结构 资源调优 调优概述 Spark作业基本运行…
http://mp.weixin.qq.com/s?__biz=MjM5NjQ5MTI5OA==&mid=2651745207&idx=1&sn=3d70d59cede236eb1cb4f7374387a235&scene=0#rd [技术博客]Spark性能优化指南——高级篇 2016-05-13 李雪蕤 美团技术团队 前言 继基础篇讲解了每个Spark开发人员都必须熟知的开发调优与资源调优之后,本文作为<Spark性能优化指南>的高级篇,将深入分析数据倾斜调…
http://mp.weixin.qq.com/s?__biz=MjM5NDMwNjMzNA==&mid=2651805828&idx=1&sn=2f413828d1fdc6a64bdbb25c51508dfc&scene=2&srcid=0519iChOETxAx0OeGoHnm7Xk&from=timeline&isappinstalled=0#rd Spark性能优化指南——基础篇 2016-05-18 优才网 前言 在大数据计算领域,Spar…