两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面.它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止.可是它们出发之前忘记了一件很重要的事情,既没有问清楚对方的特征,也没有约定见面的具体位置.不过青蛙们都是很乐观的,它们觉得只要一直朝着某个方向跳下去,总能碰到对方的.但是除非这两只青蛙在同一时间跳到同一点上,不然是永远都不可能碰面的.为了帮助这两只乐观的青蛙,你被要求写一个程序来判断这两只青蛙是否能够碰面,会在什么时候碰面. 我们把这两只青蛙分别叫做青蛙A和…
题目可以转化成求关于t的同余方程的最小非负数解: x+m*t≡y+n*t (mod L) 该方程又可以转化成: k*L+(n-m)*t=x-y 利用扩展欧几里得可以解决这个问题: eg:对于方程ax+by=c 设tm=gcd(a,b) 若c%tm!=0,则该方程无整数解. 否则,列出方程: a*x0+b*y0=tm 易用extend_gcd求出x0和y0 然后最终的解就是x=x0*(c/tm),y=y0*(c/tm) 注意:若是要求最小非负整数解? 例如求y的最小非负整数解, 令r=a/tm,则…
#include<stdio.h> #include<string.h> typedef long long ll; void gcd(ll a,ll b,ll& d,ll& x,ll& y){ ){ d=a; x=; y=; return ; } gcd(b,a%b,d,y,x); y-=(a/b)*x; } int main(){ ll x,y,m,n,l; while(~scanf("%lld%lld%lld%lld%lld",&a…
Reference: http://www.cnblogs.com/ka200812/archive/2011/09/02/2164404.html 之前说过中国剩余定理传统解法的条件是m[i]两两互质,所以这题就不能用传统解法了= = 其实还有种方法: 先来看只有两个式子的方程组: c≡b1 (mod a1) c≡b2 (mod a2) 变形得c=a1*x+b1,c=a2*x+b2 a1*x-a2*y=b2-b1 可以用扩展欧几里得求出x和y,进而求出c 那么多个式子呢?可以两个两个的迭代求.…
原题实际上就是求方程a*x+b*y=d的一个特解,要求这个特解满足|x|+|y|最小 套模式+一点YY就行了 总结一下这类问题的解法: 对于方程ax+by=c 设tm=gcd(a,b) 先用扩展欧几里得求出方程ax+by=tm的解x0.y0 然后有a*x0+b*y0=tm 令x1=x0*(c/tm),y1=y0*(c/tm) 则a*x1+b*y1=c x1.y1即原方程的一个特解 这个方程的通解:xi=x1+k*(b/m),yi=y1-k*(a/m) 另:如果要求yi的最小非负解?令r=a/tm…
什么是GCD? GCD是最大公约数的简称(当然理解为我们伟大的党也未尝不可).在开头,我们先下几个定义: ①a|b表示a能整除b(a是b的约数) ②a mod b表示a-[a/b]b([a/b]在Pascal中相当于a div b) ③gcd(a,b)表示a和b的最大公约数 ④a和b的线性组合表示ax+by(x,y为整数).我们有:若d|a且d|b,则d|ax+by(这很重要!) 线性组合与GCD 现在我们证明一个重要的定理:gcd(a,b)是a和b的最小的正线性组合. 证明: 设gcd(a,b…
exgcd入门以及同余基础 gcd,欧几里得的智慧结晶,信息竞赛的重要算法,数论的...(编不下去了 讲exgcd之前,我们先普及一下同余的性质: 若,那么 若,,且p1,p2互质, 有了这三个式子,就不用怕在计算时溢出了. 下面我会用与分别表示a与b的最大公约数与最小公倍数. 首先会来学扩欧的同学肯定都会欧几里得算法(即辗转相除法)了吧 而通过观察发现:,先除后乘防溢出. 所以与的代码如下: inline int gcd(int a,int b) {)?a:gcd(b,a%b);} inlin…
题目链接:http://poj.org/problem?id=2115 题意: 给出一段循环程序,循环体变量初始值为 a,结束不等于 b ,步长为 c,看要循环多少次,其中运算限制在 k位:死循环输出FOREVER 那么这里就是: (b-a)%gcd(c,n)==0,有解:否则无解. 有解的时候,有多少解呢? 求出来的解是: 这里就是: x * (b-a) / gcd(c,n) 其中最小的解又是多少呢? 定理: 令 t = n / d; 最小的解是:(x%t+t)%t; #include <cs…
Description Ms. Iyo Kiffa-Australis has a balance and only two kinds of weights to measure a dose of medicine. For example, to measure 200mg of aspirin using 300mg weights and 700mg weights, she can put one 700mg weight on the side of the medicine an…
设方程 ax + by = c , 若 gcd(a,b) 是 c的因子(记作gcd(a,b)|c)则方程有解,反之无解. 其中x0,y0是方程的一组特解 , d = gcd(a,b), poj1061模型转化为(n-m)* t + L * k  = x - y  ,其中t和k是未知参数,形同ax+by = c 的形式,用extgcd即可求出x的一个特解,再通过这个特解找到x的最小正整数解就可以了. AC代码: #include<cstdio> #include<algorithm>…