题意 给一个长度为\(n(\leq 300)\)的\(01\)串,每次可以把\(k(\leq 8)\)个相邻字符合并,得到新字符和一定分数,最大化最后的得分 题解 考虑设计dp:\(dp[S][i][j]\)表示区间\([i, j]\)合并为\(S\),最大得分是多少. 这么考虑一定是不遗漏的.如果\([i, j]\)留下来的区间长度\(>k\),那这个合并方案一定会在包含它的大区间计算到,所以我们只考虑能合并都合并完的情况 枚举缩完最后一个位是啥,这对应\([i, j]\)的一个长度\(\bm…
「状压DP」「暴力搜索」排列 题目描述: 题目描述 给一个数字串 s 和正整数 d, 统计 sss 有多少种不同的排列能被 d 整除(可以有前导 0).例如 123434 有 90 种排列能被 2 整除,其中末位为 2 的有 30 种,末位为 4 的有 60 种. 输入格式 输入第一行是一个整数 TTT,表示测试数据的个数,以下每行一组 s 和 d,中间用空格隔开.s 保证只包含数字 0,1,2,3,4,5,6,7,8,9 输出格式 每个数据仅一行,表示能被 d 整除的排列的个数. 输入输出样例…
题意 你有一个\(h\times w\)的棋盘,你需要在每个格子里填\([1, m]\)中的某个整数,且满足\(n\)个矩形限制:矩形的最大值为某定值.求方案数\(\bmod 10^9+7\) \(h, w, m\leq 10^4,n\leq 10\) 题解 首先来考虑单独的一个矩形限制怎么做.假设矩形面积为\(s\),最大值为\(v\) 易得答案是\(v^{s}-(v-1)^{s}\),意思就是每个数随便选,然后减去所有数\(<v\)的方案 现在考虑\(n\)个限制,实际上把棋盘分成了\(O(…
题意 求一个\(1\sim n\)的排列LIS的期望长度,\(n\leq 28\) 题解 考虑朴素的LIS:\(f[i] = min(f[j]) + 1\) 记\(mx[i]\)为\(f\)的前缀最大值,那么可以得到一个性质\(mx[i + 1] \in [mx[i], mx[i] + 1]\) 对\(mx\)数组进行差分,则差分数组只有\(01\),可以状压 由于\(mx[1] - mx[0]=1\),从第二位开始状压 然后考虑从\(1\sim i\)的排列推到\(1\sim i+1\)的排列…
传送门 >Here< 题意:用1*2的砖块铺满n*m的地板有几种方案 思路分析 状压经典题! 我们以$f[i][j]$作为状态,表示第i行之前全部填完并且第i行状态为j(状压)时的方案数. 我们考虑,对于一个格子,一块砖有3种方法. (一):横着放.对下一行没有任何影响 (二):竖着放,并且当前这一格作为砖块的下层.那么对下一行也没有任何影响 (三):竖着放,并且当前这一格作为砖块的上层.这种情况对下一行很明显是有影响的. 综上,只有情况3是对下一行有影响的. 所以我们需要一种方法来区分前两种…
题意 你有\(n\)个物品,物品和硬币有\(A\),\(B\)两种类型,假设你有\(M\)个\(A\)物品和\(N\)个\(B\)物品 每一轮你可以选择获得\(A, B\)硬币各\(1\)个,或者(硬币足够)花\(\max(a_i - M, 0)\)个\(A\),\(\max(b_i - N, 0)\)个\(B\)买\(i\)这个物品 问买到所有物品最少要多少轮 题解 巧妙的\(dp\),考虑间接设计状态 \(f[S][A] = B\)表示\(S\)这个集合买过了,\(A\)类花\(\sum a…
题目链接: (bzoj)https://www.lydsy.com/JudgeOnline/problem.php?id=4006 (luogu)https://www.luogu.org/problemnew/show/P3264 题解: 终于写出来斯坦纳树了.. 我一直不明白的地方是: spfa那种转移为什么是直接加边权?为什么没有一些特殊情况(如从根转移到儿子)不是加边权?后来觉得大概是因为那种特殊情况如果出现,则一定会在枚举子集的转移中被转移到. 做法就是,先对每个特殊点的子集求出来最小…
1087: [SCOI2005]互不侵犯King Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 3336  Solved: 1936[Submit][Status][Discuss] Description 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子. Input 只有一行,包含两个数N,K ( 1 <=N <=9, 0 <= K &…
题目链接:BZOJ 1072 这道题使用 C++ STL 的 next_permutation() 函数直接暴力就可以AC .(使用 Set 判断是否重复) 代码如下: #include <iostream> #include <cstdio> #include <cstdlib> #include <cstring> #include <algorithm> #include <cmath> #include <set>…
BZOJ 比较裸的状压DP. 刚开始写麻烦惹... \(f[i][s]\)表示考虑了前\(i\)家商店,所买物品状态为\(s\)的最小花费. 可以写求一遍一定去\(i\)商店的\(f[i]\)(\(f[i][s]=f[i-1][s]+dis[i]\)),然后再和不去\(i\)商店的\(f[i-1]\)取个\(\min\). 复杂度是\(O(nm2^m)\)吗... 可以优化,处理\(f[s]\)表示在某家商店买\(s\)集合的物品的最小代价.然后令\(g[s]\)表示考虑所有商店买\(s\)集合…
传送门 BZOJ 3195 题解 这是一道画风正常的状压DP题. 可以想到,\(dp[i][j][k]\)表示到第\(i\)个点.已经连了\(j\)条边,当前\([i - K, i]\)区间内的点的度数的奇偶性状态是\(k\)(用二进制表示,度数为奇则对应位是1,反之为0)的方案数. 然后对每个状态枚举\(i\)要和区间\([i - K, i - 1]\)中的谁连边,如果\(i\)和\(i - p\)连边的话,新的状态\(k'\)就是 k ^ (1 << p) ^ 1(二进制第\(x\)位表示…
[BZOJ 1879][SDOI 2009]Bill的挑战 Description Solution 1.考虑状压的方式. 方案1:如果我们把每一个字符串压起来,用一个布尔数组表示与每一个字母的匹配关系,那么空间为26^50,爆内存: 方案2:把每一个串压起来,多开一维记录匹配字符,那么空间为nlen26,合法,但不便于状态的设计和转移: 方案3:把每一个串同一个位置的字符放在一起,用一个布尔数组记录与每一个小写字母的匹配关系,那么空间为26^15*len,爆内存: 方案4:把每一个串同一个位置…
题目链接 (BZOJ) https://www.lydsy.com/JudgeOnline/problem.php?id=4042 (Luogu) https://www.luogu.org/problem/P4757 题解 挺神仙的题. 观察到两个重要性质: (1) 只有不影响任何已选方案的时候,才需要去考虑是否要选择\(u\)的子树内往上走的链.(因为链不带权值) (2) 如果要选择\(u\)子树内往上走的链,那么最多选择一条. 由此可知,我们可以记录哪些链在\(u\)子树内的所有方案中是必…
题目链接: BZOJ - 2004 题目分析 看到题目完全不会..于是立即看神犇们的题解. 由于 p<=10 ,所以想到是使用状压.将每个连续的 p 个位置压缩成一个 p 位 2 进制数,其中共有 k 位是1,表示这 k 个位置是某辆 Bus 当前停下的位置.需要注意的是,每个状态的第一位必须是 1 ,这样保证了不会有重复的状态. 每个状态可以转移到右边的某些状态(由当前状态的第一个 1 移动).初始状态和终止状态都是前面 k 位是 1 .用矩阵转移 n - k 次. 代码 #include <…
BZOJ DAG中,根据\(Dilworth\)定理,有 \(最长反链=最小链覆盖\),也有 \(最长链=最小反链划分数-1\)(这个是指最短的最长链?并不是很确定=-=),即把所有点划分成最少的集合,使得集合内的点两两之间没有边. 直接状压.设\(f[s]\)表示\(s\)集合内的点是否满足两两之间没有边,\(g[s]\)表示最少可以将\(s\)划分为几个集合使得集合内两两没有边. 那么如果\(f[s']=1\ (s'\in s)\),\(g[s]=\min(g[s],\ g[s\ \text…
原文链接https://www.cnblogs.com/zhouzhendong/p/LOJ6433.html 题解 枚举一个集合 S ,表示最大前缀和中包含的元素集为 S ,然后求出有多少个排列是这样的. 对于左边和右边分别考虑,我们可以发现: 左边:每一个后缀和都 >=0 右边:每一个前缀和都 <0 然后就只需要用两个 dp 分别求出每一个集合的元素的排列中分别满足上述条件的方案数即可. 注意一下题目要求最大前缀和非空. 代码 #include <bits/stdc++.h>…
前言 考试被\(hyj\)吊着打... Solution 考虑一下如果前缀和如果在某一个位置的后面的任意一个前缀和都<=0,肯定这就是最大的. 然后这样子就考虑左右两边的状压dp,然后就好了. 代码实现 #include<stdio.h> #include<stdlib.h> #include<string.h> #include<math.h> #include<algorithm> #include<queue> #incl…
考场只打了 \(52\) 分暴力...\(ljc\) 跟我说了一下大致思路,我回去敲了敲. \(f[i]\) 表示状态为 \(i\) 时的方案数.我们用二进制 \(0/1\) 表示不选/选点 \(i\). 我们设 \(j\in i\) 且拓扑序最小. \[f[i]=\sum f[i\text{^}2^j]\times 2^{i\&w[j]}\] 为什么这个是对的呢? 因为 \(j\) 连出的那些没有连向状态 \(i\) 的边一定会被删去,然后那些连向边只用 \(2^i\) 搞一搞.时间复杂度 \…
LINK 思路 首先在加入几个点之后所有的点都只有三种状态 一个是在独立集中,一个是和独立集联通,还有一个是没有被访问过 然后前两个状态是可以压缩起来的 因为我们只需要记录下当前独立集大小和是否被访问过,然后每次加点我们直接枚举加入独立集中的点然后周围联通的点都可以一起访问,只要保证当前枚举的点没有被访问过就可以了 因为这样选出来的当前的点一定是不是独立集中的且不和独立集联通的 然后每次因为加入了很多个点,我们设\(w_i\)表示和i联通(包括i)的所有点的集合 然后就可以用排列数算了,只需要保…
题目链接 loj2542 题解 设\(f[i][S]\)表示从\(i\)节点出发,走完\(S\)集合中的点的期望步数 记\(de[i]\)为\(i\)的度数,\(E\)为边集,我们很容易写出状态转移方程 ①若\(i \notin S\) \[f[i][S] = \frac{1}{de[i]}\sum\limits_{(i,j) \in E}(f[j][S] + 1)\] ②若\(i \in S\) 除非\(\{i\} = S\),\(f[i][S] = 0\) 否则 \[f[i][S] = \f…
题目链接 loj2540 题解 有一个朴素三进制状压\(dp\),考虑当前点三种状态:没考虑过,被选入集合,被排除 就有了\(O(n3^{n})\)的转移 但这样不优,我们考虑优化状态 设\(f[i][S]\)表示独立集大小为\(i\),不可选集合为\(S\)[要么是已经在独立集中,要么已经被排除了] 那么剩余点都是可选的 就枚举剩余点\(u\),记\(u\)相邻的集合为\(S_u\),那么当\(u\)加入后,集合\(S_u\)的点都不能选,但是由于所有点都会加入排列之中,\(S_u\)中除了\…
这个题的搜索可以打到48分…… #include <cstdio> #include <cstring> #include <algorithm> ; bool must[N],in[N]; int cnt; int n,a[N][N],q[N],b[N]; inline bool judge(int len,int lim){ return lim-len>=cnt; } inline bool check(int len){ register int i,j,…
题面 Loj 题解 感觉挺难的啊- 状压\(dp\) 首先,有一个性质 对于一个序列的最大前缀和\(\sum_{i=1}^{p} A[i]\) 显然对于每个\(\sum_{i=p+1}^{x}A[i](p+1 \leq x \leq n)<0\) 我们可以以\(p\)分成两个集合 \(n\leq 20\),所以状压一下 \(sum[i]\)表示当前状态表示的和 \(f[i]\)表示用当前状态的数,组成最大前缀和为\(sum[i]\)的方案数 \(g[i]\)表示当前状态的数,组成的序列,每个前缀…
题目描述 一张$n$个点$m$条边的有向图,通过每条边需要消耗时间,初始为$0$时刻,可以在某个点停留.有$q$个任务,每个任务要求在$l_i$或以后时刻到$s_i$接受任务,并在$r_i$或以前时刻到$t_i$完成任务.同一时刻可以接受多个任务.问:最多能完成多少任务. 输入 第一行,三个正整数$n$.$m$.$q$: 接下来$m$行,每行三个正整数$u_i$.$v_i$.$c_i$,表示有一条从$u_i$到$v_i$,耗时$c_i$的边. 接下来$q$行,每行四个正整数$s_i$.$t_i$…
传送门 今天\(PKUWC\)试机的题 看着边上的大佬们一个个\(A\)穿咱还是不会-- 我们考虑枚举最大前缀和,如果一个前缀\(1\)到\(p\)是最大前缀和,那么\(p\)后面的所有前缀和都要小于\(0\) 于是我们设\(sum_S\)为子集\(S\)中所有元素的和,\(f_S\)为满足最大前缀和为\(sum_S\)的\(S\)的排列个数,那么我们可以枚举这个排列中位于第一个的数,只要剩下的数之和\(sum_{S-\{x\}}\)大于\(0\),那么\(f_S\)就可以加上\(f_{S-\{…
问题描述 LG1879 题解 设\(opt[i][j]\)代表前\(i\)行,且第\(i\)行状态为\(j\)的方案数. 枚举\(j\),再枚举\(k\),\(k\)为上一行的状态. 判断\(j,k\)能否共存(j&k==0) 计数转移即可. 必须加强位运算能力. \(\mathrm{Code}\) #include<bits/stdc++.h> using namespace std; template <typename Tp> void read(Tp &x)…
问题描述 https://www.luogu.org/problem/P3092 题解 观察到 \(k \le 16\) ,自然想到对 \(k\) 状压. 设 \(opt[i]\) 代表使用硬币状况为 \(i\) 时,最多可以买到 \(opt[i]\) 个物品. 然后 \(opt[i]\) 在DP过程中二分求出. \(\mathrm{Code}\) #include<bits/stdc++.h> using namespace std; template <typename Tp>…
问题描述 BZOJ2073 题解 发现 \(n \le 16\) ,显然想到状压 设 \(opt[S]\) 代表过河集合为 \(S\) 时,最小时间. 枚举 \(S\) 的子集,进行转移 枚举子集的方法 对于 \(j\) 为 \(k\) 的子集 当知道 \(j\) 时 for(int k=(j+1)|j;k<=S;k=(k+1)|j) 当知道 \(k\) 时 for(int j=(k-1)&k;j;j=(j-1)&k) \(\mathrm{Code}\) #include<bi…
问题描述 BZOJ1688 题解 背包,在转移过程中使用状压. \(\mathrm{Code}\) #include<bits/stdc++.h> using namespace std; template <typename Tp> void read(Tp &x){ x=0;char ch=1;int fh; while(ch!='-'&&(ch>'9'||ch<'0')) ch=getchar(); if(ch=='-') ch=getch…
附带其他做法参考:随机化(模拟退火.爬山等等等)配合搜索剪枝食用. 首先题意相当于在图上找一颗生成树并确定根,使得每个点与父亲的连边的权乘以各自深度的总和最小.即$\sum\limits_{i}depth_i\times value_{i→fa}$. 看数据范围想状压,固定好一个点为根,然后每个点选没选看做状态$0/1$压位,于是朴素思想是$f[S][S_0][d]$表示已经选了$S$,当前$d$层选了$S'$($S'\subset S$),这样一定可以保证由$S'$导出第$d+1$层,更新答案…