QQ-plot深入理解与实现 26JUN June 26, 2013 最近在看关于CSI(Channel State Information)相关的论文,发现论文中用到了QQ-plot.Sigh!我承认我是第一次见到这个名词,异常陌生.维基百科给出了如下定义: "在统计学中,QQ-plot(Q代表分位数Quantile)是一种通过画出分位数来比较两个概率分布的图形方法.首先选定区间长度,点(x,y)对应于第一个分布(x轴)的分位数和第二个分布(y轴)相同的分位数.因此画出的是一条含参数的曲线,参…
画曼哈顿图和QQ plot 首推R包“qqman”,简约方便.下面具体介绍以下. 一.画曼哈顿图 install.packages("qqman") library(qqman) 1.准备包含SNP, CHR, BP, P的文件gwasResults(如果没有zscore可以不用管),如下所示: 2.上代码,如下所示: manhattan(gwasResults) 如果觉得不够美观,考虑添加一下参数: manhattan(gwasResults, main = "Manhat…
上一篇文章我们介绍了使用逻辑回归来处理分类问题,本文我们讲一个更强大的分类模型.本文依旧侧重代码实践,你会发现我们解决问题的手段越来越丰富,问题处理起来越来越简单. 支持向量机(Support Vector Machine, SVM)是最受欢迎的机器学习模型之一.它特别适合处理中小型复杂数据集的分类任务. 一.什么是支持向量机 SMV在众多实例中寻找一个最优的决策边界,这个边界上的实例叫做支持向量,它们"支持"(支撑)分离开超平面,所以它叫支持向量机. 那么我们如何保证我们得到的决策边…
 先从sklearn说起吧,如果学习了sklearn的话,那么学习Keras相对来说比较容易.为什么这样说呢? 我们首先比较一下sklearn的机器学习大致使用流程和Keras的大致使用流程: sklearn的机器学习使用流程: from sklearn.模型簇 import 模型名 from sklearn.metrics import 评价指标 ''' 数据预处理及训练测试集分离提取''' myModel = 模型名称() # 对象初始化 myModel.fit(训练集x , 训练集y) #…
首先先来讲讲闲话 如果让你现在去搞机器学习,你会去吗?不会的话是因为你对这方面不感兴趣,还是因为你觉得这东西太难了,自己肯定学不来?如果你觉的太难了,很好,相信看完这篇文章,你就会有胆量踏入机器学习这一领域. 机器学习(Machine-Learning),一个在才学一年编程的人看来十分高大尚的东西,不知不觉就接触了它.暑假的时候表哥给我布置了任务,在github上有一篇DeepLearningFlappyBird,他当时要我一天之内先让这段代码跑起来,然后第二天再把这段代码翻译成C++的....…
最近开始学习机器学习,以下会记录我学习中遇到的问题以及我个人的理解 决策树算法,网上很多介绍,在这不复制粘贴.下面解释几个关键词就好. 信息熵(entropy):就是信息不确定性的多少 H(x)=-ΣP(x)log2[P(x)].变量的不确定性越大,熵就越大. 信息获取量(Information Gain):这是ID3算法中定义的一个选择属性判断结点的算法.Gain(A)=H(D)-HA(D).就是本的信息熵与下一级的信息熵之差.用来确定信息获取量的多少,信息获取量最多的即选择为本级的判断属性.…
 100天搞定机器学习(Day1-34) 100天搞定机器学习|Day35 深度学习之神经网络的结构 100天搞定机器学习|Day36 深度学习之梯度下降算法 本篇为100天搞定机器学习之第37天,亦为3Blue1Brown<深度学习之反向传播算法>学习笔记. 上集提到我们要找到特定权重和偏置,从而使代价函数最小化,我们需要求得代价函数的负梯度,它告诉我们如何改变连线上的权重偏置,才能让代价下降的最快.反向传播算法是用来求这个复杂到爆的梯度的. 上一集中提到一点,13000维的梯度向量是难以想…
http://www.cssxt.com/html/2449/2449.html 效果如图: 实现代码解析:MainActivity.java1.引入布局文件2.4个标题控件的初始化以及点击事件的监听设置3.viewpager控件的初始化,获取Fragment对象并保存在容器中,设置viewpager的适配器和监听4.viewpager的监听OnPageChangeListener方法的实现,主要是标题栏下的指示横线的移动操作. 1 2 3 4 5 6 7 8 9 10 11 12 13 14…
关键词: 梯度下降:就是让数据顺着梯度最大的方向,也就是函数导数最大的放下下降,使其快速的接近结果. Cost函数等公式太长,不在这打了.网上多得是. 这个非线性回归说白了就是缩小版的神经网络. python实现: import numpy as np import random def graientDescent(x,y,theta,alpha,m,numIterations):#梯度下降算法 xTrain =x.transpose() for i in range(0,numIterati…
这一节很简单,都是高中讲过的东西 简单线性回归:y=b0+b1x+ε.b1=(Σ(xi-x–)(yi-y–))/Σ(xi-x–)ˆ2       b0=y--b1x-    其中ε取 为均值为0的正态分布 多元线性回归差不多 我自己写了程序,练习一下面向对象编程 import numpy as np class SimpleLinearRegression: def __init__(self): self.b0=0 self.b1=0 def fit(self,X,Y): n=len(X) d…