2017年2月16日,Google正式对外发布Google TensorFlow 1.0版本,并保证本次的发布版本API接口完全满足生产环境稳定性要求.这是TensorFlow的一个重要里程碑,标志着它可以正式在生产环境放心使用.在国内,从InfoQ的判断来看,TensorFlow仍处于创新传播曲线的创新者使用阶段,大部分人对于TensorFlow还缺乏了解,社区也缺少帮助落地和使用的中文资料.InfoQ期望通过深入浅出TensorFlow系列文章能够推动Tensorflow在国内的发展.欢迎加…
本文转载自:https://blog.csdn.net/xummgg/article/details/69214366 前言 上月导师在组会上交我们用tensorflow写深度学习和卷积神经网络,并把其PPT的参考学习资料给了我们, 这是codelabs上的教程:<TensorFlow and deep learning,without a PhD> 当然登入需要FQ,我也顺带巩固下,做个翻译,不好之处请包含指正. 当然需要安装python,教程推荐使用python3.如果是Mac,可以参考博…
原文:TensorFlow 2.0 Quick Start Guide 协议:CC BY-NC-SA 4.0 自豪地采用谷歌翻译 不要担心自己的形象,只关心如何实现目标.--<原则>,生活原则 2.3.c 在线阅读 ApacheCN 面试求职交流群 724187166 ApacheCN 学习资源 目录 TensorFlow 2.0 快速入门指南 零.前言 第 1 部分:TensorFlow 2.00 Alpha 简介 一.TensorFlow 2 简介 二.Keras:TensorFlow 2…
Minist数据集:MNIST_data 包含四个数据文件 一.方法一:经典方法 tf.matmul(X,w)+b import tensorflow as tf import numpy as np import input_data import time #define paramaters learning_rate=0.01 batch_size=128 n_epochs=900 # 1.read from data file #using TF learn built in func…
深度学习框架竞争很激烈,而且看上去都是业界巨头在玩. 老师木:是的.一个深度学习框架一旦像Hadoop那样成为事实工业标准,就占据了人工智能各种关键应用的入口,对各类垂直应用,基于私有部署的技术服务,公有云上的AI 即服务业务,甚至底层专用硬件市场都有举足轻重的影响.它的角色就像互联网时代的浏览器,移动互联网时代的安卓操作系统一样,是战略级产品,业界巨头谁都不想让给他人也就不奇怪了.目前,大公司出品的比较知名的框架有Google的TensorFlow,微软CNTK, Amazon 的MxNet,…
该系列主要是<Tensorflow 实战Google深度学习框架 >阅读笔记:有了Cookbook的热身后,以这本书作为基础形成个人知识体系. Ref: [Tensorflow] Cookbook - The Tensorflow Way 第一章,简介(略) 第二章,安装(仅记录个别要点) Protocol buffer Bazel, similar with Makefile for complile. Install steps: (1) Docker (2) Tensorflow Sou…
原文地址:http://www.cnblogs.com/helloIT/articles/5095668.html /********************************************************* 看了赵岩大神的<c语言点滴>,他特别强调了google的 重要性,狗哥是我们每个人的老师,什么不会的完全可以去google一下, 但是强大的狗哥还是需要一定的技巧才能使用好的,所以转载了以下内容. /********************************…
承接移动端目标识别(2) 使用TensorFlow Lite在移动设备上运行         在本节中,我们将向您展示如何使用TensorFlow Lite获得更小的模型,并允许您利用针对移动设备优化的操作. TensorFlow Lite是TensorFlow针对移动和嵌入式设备的轻量级解决方案.它支持端上的机器学习推理,具有低延迟和小二进制模型大小. TensorFlow Lite使用了许多技术,例如允许更小和更快(定点数学)模型的量化内核. 对于本节,您需要从源代码构建TensorFlow…
平时工作就是做深度学习,但是深度学习没有落地就是比较虚,目前在移动端或嵌入式端应用的比较实际,也了解到目前主要有 caffe2,腾讯ncnn,tensorflow,因为工作用tensorflow比较多,所以也就从tensorflow上下手了. 下面内容主要参考&翻译: https://www.tensorflow.org/mobile/?hl=zh-cn https://github.com/tensorflow/models/blob/master/research/object_detect…
TF Lite开发人员指南 目录: 1 选择一个模型 使用一个预训练模型 使用自己的数据集重新训练inception-V3,MovileNet 训练自己的模型 2 转换模型格式 转换tf.GraphDef 完整转换器参考 计算节点兼容性 Graph 可视化工具 3 在移动端app,使用TensorFlow Lite模型推理 android IOS Raspberry PI 使用一个TensorFlow Lite 模型在你的移动端app需要受到需要约束:首先,你必须有训练好的模型(预训练/自己训练…