TorchVision 预训练模型进行推断】的更多相关文章

torchvision.models 里包含了许多模型,用于解决不同的视觉任务:图像分类.语义分割.物体检测.实例分割.人体关键点检测和视频分类. 本文将介绍 torchvision 中模型的入门使用,一起来创建 Faster R-CNN 预训练模型,预测图像中有什么物体吧. import torch import torchvision from PIL import Image 创建预训练模型 model = torchvision.models.detection.fasterrcnn_r…
文章来自:微信公众号[机器学习炼丹术].一个ai专业研究生的个人学习分享公众号 文章目录: 目录 torchvision 1 torchvision.datssets 2 torchvision.models 模型比较 torchvision 官网上的介绍(翻墙):The torchvision package consists of popular datasets, model architectures, and common image transformations for compu…
本文介绍了一种新的语言表征模型 BERT--来自 Transformer 的双向编码器表征.与最近的语言表征模型不同,BERT 旨在基于所有层的左.右语境来预训练深度双向表征.BERT 是首个在大批句子层面和 token 层面任务中取得当前最优性能的基于微调的表征模型,其性能超越许多使用任务特定架构的系统,刷新了 11 项 NLP 任务的当前最优性能记录. 研究证明语言模型预训练可以有效改进许多自然语言处理任务,包括自然语言推断.复述(paraphrasing)等句子层面的任务,以及命名实体识别…
https://github.com/pytorch/vision/tree/master/torchvision/models 几乎所有的常用预训练模型都在这里面 总结下各种模型的下载地址: 1 Resnet: model_urls = { 'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth', 'resnet34': 'https://download.pytorch.org/models/resnet…
Pytorch 保存模型与加载模型 PyTorch之保存加载模型 参数初始化参 数的初始化其实就是对参数赋值.而我们需要学习的参数其实都是Variable,它其实是对Tensor的封装,同时提供了data,grad等借口,这就意味着我们可以直接对这些参数进行操作赋值了.这就是PyTorch简洁高效所在.所以我们可以进行如下操作进行初始化,当然其实有其他的方法,但是这种方法是PyTorch作者所推崇的: def weight_init(m): # 使用isinstance来判断m属于什么类型 if…
转自:https://blog.csdn.net/Vivianyzw/article/details/81061765 东风的地方 1. 直接加载预训练模型 在训练的时候可能需要中断一下,然后继续训练,也就是简单的从保存的模型中加载参数权重: net = SNet() net.load_state_dict(torch.load("model_1599.pkl")) 这种方式是针对于之前保存模型时以保存参数的格式使用的: torch.save(net.state_dict(), &qu…
目录 从 PyTorch 中导出模型参数 第 0 步:配置环境 第 1 步:安装 MMdnn 第 2 步:得到 PyTorch 保存完整结构和参数的模型(pth 文件) 第 3 步:导出 PyTorch 模型的参数,保存至 hdf5 文件 可能遇到的问题 验证从 PyTorch 导出的 AlexNet 预训练模型 Attentions References tf.keras 的预训练模型都放在了'tensorflow.python.keras.applications' 目录下,在 tensor…
1. 什么是BERT BERT的全称是Bidirectional Encoder Representation from Transformers,是Google2018年提出的预训练模型,即双向Transformer的Encoder,因为decoder是不能获要预测的信息的.模型的主要创新点都在pre-train方法上,即用了Masked LM和Next Sentence Prediction两种方法分别捕捉词语和句子级别的representation. Bert最近很火,应该是最近最火爆的A…
1. 什么是XLNet XLNet 是一个类似 BERT 的模型,而不是完全不同的模型.总之,XLNet是一种通用的自回归预训练方法.它是CMU和Google Brain团队在2019年6月份发布的模型,最终,XLNet 在 20 个任务上超过了 BERT 的表现,并在 18 个任务上取得了当前最佳效果(state-of-the-art),包括机器问答.自然语言推断.情感分析和文档排序. 作者表示,BERT 这样基于去噪自编码器的预训练模型可以很好地建模双向语境信息,性能优于基于自回归语言模型的…
ERNIE是百度自研的持续学习语义理解框架,该框架支持增量引入词汇(lexical).语法 (syntactic) .语义(semantic)等3个层次的自定义预训练任务,能够全面捕捉训练语料中的词法.语法.语义等潜在信息. ERNIE2.0实现了在中英文16个任务上的最优效果,具体效果见下方列表. 一.ERNIE2.0中文效果验证 我们在 9 个任务上验证 ERNIE 2.0 中文模型的效果.这些任务包括:自然语言推断任务 XNLI:阅读理解任务 DRCD.DuReader.CMRC2018:…