这也是一道LCT维护生成树的题. 那么我们还是按照套路,先对边进行排序,然后顺次加入. 不过和别的题有所不同的是: 在本题中,我们需要保证LCT中正好有\(n-1\)条边的时候,才能更新\(ans\) 其次,更新答案的时候,已知我们的边是最小的边,所以我们要考虑删除最大的边来考虑更新答案,而求最大边的过程,可以通过\(vis\)打标记,加一个指针随时维护来解决 最后一件事!!!!!! 一定记得判断自环!!!!!!!! for (int i=1;i<=m;i++) { int x=a[i].x,y…
题目链接 先将边排序,这样就可以按从小到大的顺序维护生成树,枚举到一条未连通的边就连上,已连通则(用当前更大的)替换掉路径上最小的边,这样一定不会更差. 每次构成树时更新答案.答案就是当前边减去生成树上最小边的权值. LCT上维护最小边的编号.求最小边把树上的边用vis[]标记即可. 不熟啊. (另外暴力可以排序后枚举一个分界点,在它之后求最小生成树,在它之前求最大生成树) #include <cstdio> #include <cctype> #include <algor…
洛谷题目传送门 和魔法森林有点像,都是动态维护最小生成树(可参考一下Blog的LCT总结相关部分) 至于从小到大还是从大到小当然无所谓啦,我是从小到大排序,每次枚举边,还没连通就连,已连通就替换环上最小的一条边,可以保证最优.如果已经构成了生成树,就可以更新答案,因为当前枚举到的一定是生成树里最大的,所以直接用当前减去最小更新答案. 至于最小的怎样维护,其实根本不需要什么别的set什么的数据结构.只要标记一下在生成树中的边,再搞一个指针指向在树中最小的边就好啦.当最小的边也被替换,就把指针后移,…
题面 luogu 题解 LCT 动态树Link-cut tree(LCT)总结 考虑先按边权排序,从小到大加边 如果构成一颗树了,就更新答案 当加入一条边,会形成环. 贪心地想,我们要最大边权-最小边权最小 最大边权固定就是新加入的这条边,我们要让最小边权尽量地大 那么我们可以去掉原先路径上最小的那一条边,这样一定不会差 以上,可以用LCT维护 ps:LCT只有点权,所以对于每条边,新建一个节点 Code #include<bits/stdc++.h> #define mp make_pair…
题目描述 给定一个标号为从 \(1\) 到 \(n\) 的.有 \(m\) 条边的无向图,求边权最大值与最小值的差值最小的生成树. 输入输出格式 输入格式: 第一行两个数 \(n, m\) ,表示图的点和边的数量. 第二行起 \(m\) 行,每行形如 \(u_i, v_i, w_i\)​ ,代表 \(u_i\)​ 到 \(v_i\)​ 间有一条长为 \(w_i\)​ 的无向边. 输出格式: 输出一行一个整数,代表你的答案. 数据保证存在至少一棵生成树. 输入输出样例 输入样例#1: 4 6 1…
题目描述 为了得到书法大家的真传,小 E 同学下定决心去拜访住在魔法森林中的隐 士.魔法森林可以被看成一个包含 n 个节点 m 条边的无向图,节点标号为 1,2,3,…,n,边标号为 1,2,3,…,m.初始时小 E 同学在 1 号节点,隐士则住在 n 号节点.小 E 需要通过这一片魔法森林,才能够拜访到隐士. 魔法森林中居住了一些妖怪.每当有人经过一条边的时候,这条边上的妖怪 就会对其发起攻击.幸运的是,在 1 号节点住着两种守护精灵:A 型守护精灵与 B 型守护精灵.小 E 可以借助它们的力…
本题是运用LCT来维护一个最小生成树. 是一个经典的套路 题目中求的是一个\(max(a_i)+max(b_i)\)尽可能小的路径. 那么这种的一个套路就是,先按照一维来排序,然后用LCT维护另一维 那么这个对于这个题来说,我们考虑,可以先按照a从小到大排序,然后顺次加入每条边,这样每次加入的边一定是有可能会更新到\(ans\)的. 对于一条边\(u->v\),如果\(u\)和\(v\)不在一个联通块里面的话,那么就直接连上这个边,然后尝试更新答案 如果在同一个联通块里面呢,我们就判断\(u\)…
点此看题面 大致题意: 给你一棵树,\(3\)种操作:连一条边,删一条边,询问两点是否联通. \(LCT\)维护连通性 有一道类似的题目:[BZOJ2049][SDOI2008] Cave 洞穴勘测. 这两道题都是\(LCT\)动态维护连通性的模板题. 考虑将\(x\)和\(y\)连边时,我们就在\(LCT\)上\(Link(x,y)\). 同理,\(x\)和\(y\)断边时,就\(Cut(x,y)\). 询问连通性时,只要判断\(FindRoot(x)\)与\(FindRoot(y)\)是否相…
QWQ 这个题目是LCT维护子树信息的经典应用 根据题目信息来看,对于一个这条边的两个端点各自的\(size\)乘起来,不过这个应该算呢? 我们可以考虑在LCT上多维护一个\(xv[i]\)表示\(i\)的虚子树的子树和,然后维护\(sum[i]\)表示\(i\)的虚+实子树之和. 那么对于一个点\(x\),他在原树上的字数大小就应该是$$size = xv[x]+sum[ch[x][1]]+1$$ 这是个经典套路! 对于这个题来说,我们可以通过\(split(x,y)\),然后\(ans\)就…
题目描述 给定一个标号为从 11 到 nn 的.有 mm 条边的无向图,求边权最大值与最小值的差值最小的生成树. 输入输出格式 输入格式:   第一行两个数 n, mn,m ,表示图的点和边的数量. 第二行起 mm 行,每行形如 u_i, v_i, w_iui​,vi​,wi​ ,代表 u_iui​ 到 v_ivi​ 间有一条长为 w_iwi​ 的无向边.   输出格式:   输出一行一个整数,代表你的答案. 数据保证存在至少一棵生成树.   输入输出样例 输入样例#1: 复制 4 6 1 2…