让 LLM 来评判 | 选择 LLM 评估模型】的更多相关文章

一,scikit-learn中常用的评估模型 1.评估分类模型: ​ 2.评估回归模型: ​ 二.常见模型评估解析: •对于二分类问题,可将样例根据其真实类别和分类器预测类别划分为:(T,F表示预测的正确与错误性,P,N表示预测的正类和负类) •真正例(TruePositive,TP):真实类别为正例,预测类别为正例. •假正例(FalsePositive,FP):真实类别为负例,预测类别为正例. •假负例(FalseNegative,FN):真实类别为正例,预测类别为负例. •真负例(True…
目录 1.评估分类方法的性能 1.1 混淆矩阵 1.2 其他评价指标 1)Kappa统计量 2)灵敏度与特异性 3)精确度与回溯精确度 4)F度量 1.3 性能权衡可视化(ROC曲线) 2.评估未来的性能 2.1 保持法 2.2 交叉验证 2.3 自助法抽样 1.评估分类方法的性能 拥有能够度量实用性而不是原始准确度的模型性能评价方法是至关重要的. 3种数据类型评价分类器:真实的分类值:预测的分类值:预测的估计概率.之前的分类算法案例只用了前2种. 对于单一预测类别,可将predict函数设定为…
吴恩达老师机器学习课程chapter05--评估模型 本文是非计算机专业新手的自学笔记,高手勿喷. 本文仅作速查备忘之用,对应吴恩达(AndrewNg)老师的机器学期课程第十章.第十一章. 目录 吴恩达老师机器学习课程chapter05--评估模型 评估模型方法 训练集(training set)与测试集(test set) 训练集.交叉验证集(cross validation set / cv)与测试集 高偏差(bias)与高方差(variance) 基本概念 正则化的影响 学习曲线(lear…
学习建立GM(1,1)灰色预测评估模型,解决实际问题: SARS疫情对某些经济指标的影响问题 一.问题的提出 2003 年的 SARS 疫情对中国部分行业的经济发展产生了一定影响,特别是对部分 疫情较严重的省市的相关行业所造成的影响是显著的,经济影响主要分为直接经济影响 和间接影响.直接经济影响涉及商品零售业.旅游业.综合服务等行业.很多方面难以 进行定量的评估,现仅就 SARS 疫情较重的某市商品零售业.旅游业和综合服务业的影 响进行定量的评估分析. 究竟 SARS 疫情对商品零售业.旅游业和…
不多说,直接上干货! Spark Mllib里决策树二元分类使用.areaUnderROC方法计算出以AUC来评估模型的准确率和决策树多元分类使用.precision方法以precision来评估模型的准确率(图文详解) Spark Mllib里决策树回归分析使用.rootMeanSquaredError方法计算出以RMSE来评估模型的准确率   具体,见 Hadoop+Spark大数据巨量分析与机器学习整合开发实战的第18章 决策树回归分类Bike Sharing数据集…
不多说,直接上干货! Spark Mllib里决策树二元分类使用.areaUnderROC方法计算出以AUC来评估模型的准确率 具体,见 Hadoop+Spark大数据巨量分析与机器学习整合开发实战的第13章 使用决策树二元分类算法来预测分类StumbleUpon数据集 Spark Mllib里决策树多元分类使用.precision方法以precision来评估模型的准确率 具体,见 Hadoop+Spark大数据巨量分析与机器学习整合开发实战的第17章 决策树多元分类UCI Covertype…
对book3.csv数据集,实现如下功能: (1)创建训练集.测试集 (2)用rpart包创建关于类别的cart算法的决策树 (3)用测试集进行测试,并评估模型 book3.csv数据集 setwd('D:\\data') list.files() dat=read.csv(file="book3.csv",header=TRUE) #变量重命名,并通过x1~x11对class属性进行预测 colnames(dat)<-c("x1","x2"…
import numpy as np import matplotlib.pyplot as plt from sklearn.svm import LinearSVC from sklearn.datasets import load_digits from sklearn.model_selection import learning_curve #模型选择学习曲线learning_curve模型 def test_learning_curve(): ### 加载数据 digits = lo…
一.模型验证方法如下: 通过交叉验证得分:model_sleection.cross_val_score(estimator,X) 对每个输入数据点产生交叉验证估计:model_selection.cross_val_predict(estimator,X) 计算并绘制模型的学习率曲线:model_selection.learning_curve(estimator,X,y) 计算并绘制模型的验证曲线:model_selection.validation(estimator,...) 通过排序评…
本节描述如何在数据库中计算查询.在ClustrixDB中,我们跨节点切片数据,然后将查询发送到数据.这是数据库的基本原则之一,它允许随着添加更多节点而几乎线性地扩展. 有关如何分布数据的概念,请参阅数据分布,因为本页假定您理解这些概念.需要记住的主要概念是,表和索引是跨节点划分的,并且每个表和索引都有自己的分布,这使我们能够在给定的主列下精确地知道数据的位置. 并行查询求值(通过示例) ClustrixDB对简单查询使用并行查询求值,对分析查询(类似于柱状存储)使用大规模并行处理(MPP). 最…