首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
Lucas 定理简单证明
】的更多相关文章
xdoj-1057(Lucas定理的证明及其模板)
Lucas定理的证明: 转自百度百科(感觉写的还不错) 首先你需要这个算式: ,其中f > 0&& f < p,然后 (1 + x) nΞ(1 + x) sp+q Ξ( (1 + x)p)s· (1 + x) q Ξ(1 + xp) s· (1 + x) q(mod p) (modp) 所以得(1 + x) sp+q (mod p) 我们求右边的 的系数为: 求左边的 为: 通过观察你会发现当且仅当i = t , j = r ,能够得到 的…
lucas定理的证明
http://baike.baidu.com/link?url=jJgkOWPSRMobN7Zk4kIrQAri8m0APxcxP9d-C6qSkIuembQekeRwUoEoBd6bwdidmoCRQB_dBklDffpzM_87iSPMyiph2iAXCTyv19YpuuG 看一下这个冯志刚的初等数论证明 对最后的补充 (1+x)的a0次方展开式中每一项的形式能够写成C(a0.b0)x的b0次方的形式.每一项是相加的 同理可得 (1+xp)的a1次方展开式中的每一项的形式能够写成C(a1,b…
lucas定理证明
Lucas 定理(证明) A.B是非负整数,p是质数.AB写成p进制:A=a[n]a[n-1]...a[0],B=b[n]b[n-1]...b[0]. 则组合数C(A,B)与C(a[n],b[n])*C(a[n-1],b[n-1])*...*C(a[0],b[0]) mod p 相同 即:Lucas(n,m,p)=c(n%p,m%p)*Lucas(n/p,m/p,p) 证明: 首先我们注意到 n=(ak...a2,a1,a0)p = (ak...a2,a1)p * p + a0 = [n…
Lucas定理——定义、证明、实现、运用
目录 什么是Lucas定理 证明Lucas定理 Lucas定理求解组合数的C++实现 什么是Lucas定理 这是一个有助于分解组合数来求解的定理,适合模数小,数字大的问题. 有质数 \(p\),对于\(n,m\),如果\(n=k_1p+b_1,m=k_2p+b_2\),有 \[C_n^m\equiv C_{k_1}^{k_2}C_{b_1}^{b_2} \pmod p \] 由此可以分解成较小的问题求解. 证明Lucas定理 这个证明利用了二项式定理的思路,前所未闻,真的很有趣. 根据二项式定理…
『Lucas定理以及拓展Lucas』
Lucas定理 在『组合数学基础』中,我们已经提出了\(Lucas\)定理,并给出了\(Lucas\)定理的证明,本文仅将简单回顾,并给出代码. \(Lucas\)定理:当\(p\)为质数时,\(C_n^m\equiv C_{n\ mod\ p}^{m\ mod\ p}*C_{n/p}^{m/p}(mod\ p)\). 在计算模域组合数时,如果模数较小,那么就可以尝试使用\(Lucas\)定理来递归求解,其时间复杂度为\(O(plog_p\min(n,m))\). \(Code:\) inlin…
Lucas定理学习笔记
从这里开始 一个有趣的问题 扩展Lucas算法 一个有趣的问题 题目大意 给定$n, m, p$,求$C_{n}^{m}$除以$p$后的余数. Subtask#1 $0\leqslant m\leqslant n \leqslant 2\times 10^{3}$ 直接杨辉恒等式$C_{n}^{m} = C_{n - 1}^{m - 1} + C_{n - 1}^{m}$递推. 时间复杂度$O(n^{2})$. Subtask#2 $0\leqslant m\leqslant n \leqs…
初等数论及其应用——Lucas定理
Lucas定理用于解决较大组合数的取模问题,下面的理论整理源自冯志刚的<初等数论>,其与百度百科上呈现的Lucas定理形式上不同,但是容易看到二者的转化形式. 首先我们来整理一下冯志刚的<初等数论>中关于Lucas定理的证明:…
lucas定理 +证明 学习笔记
lucas定理 p为素数 \[\dbinom n m\equiv\dbinom {n\%p} {m\%p} \dbinom {n/p}{m/p}(mod p)\] 左边一项直接求,右边可递归处理,不包含求组合数复杂度是\(log_p(m)\) 证明 我们记\(n=sp+q,m=tp+r,(q,r<p)\) \[\dbinom {sp+q} {tp+r} \equiv \dbinom {s} {t} \dbinom {q} {r} (mod p)\] 有这么一个性质\(\binom p d\equ…
【luogu P3807】【模板】卢卡斯定理/Lucas 定理(含 Lucas 定理证明)
[模板]卢卡斯定理/Lucas 定理 题目链接:luogu P3807 题目大意 求 C(n,n+m)%p 的值. p 保证是质数. 思路 Lucas 定理内容 对于非负整数 \(n\),\(m\),质数 \(p\),有: \(C_m^n\equiv \prod\limits_{i=0}^kC_{m_i}^{n^i}(\bmod\ p)\) 其中 \(m=m_kp^k+...+m_1p+m_0\),\(n=n_kp^k+...+n_1p+n_0\).(其实就是 \(n,m\) 的 \(p\) 进…
组合数取模Lucas定理及快速幂取模
组合数取模就是求的值,根据,和的取值范围不同,采取的方法也不一样. 下面,我们来看常见的两种取值情况(m.n在64位整数型范围内) (1) , 此时较简单,在O(n2)可承受的情况下组合数的计算可以直接用杨辉三角递推,边做加法边取模. (2) , ,并且是素数 本文针对该取值范围较大又不太大的情况(2)进行讨论. 这个问题可以使用Lucas定理,定理描述: 其中 这样将组合数的求解分解为小问题的乘积,下面考虑计算C(ni, mi) %p. 已知C(n, m) mod p = n!/(m!(…