P2258 子矩阵 (搜索,动态规划)】的更多相关文章

题目链接 Solution 搜索+DP. 刚好把搜索卡死的数据范围... 然后应该可以很容易想到枚举行的情况,然后分列去DP. 行的情况直接全排列即可,复杂度最高 \(O(C_{16}^{8})\). 然后分列进行 DP, \(f[i][j]\) 代表以 \(i\) 为结尾,选了 \(j\) 个的答案. 之后就是个简单的线性 DP ,对一些绝对值差进行预处理,复杂度 \(O(n^3)\) . 总复杂度 \(O(C_{16}^{8}*n^3)\) ,可以过. Code #include<bits/…
P2258 子矩阵 二进制枚举套二进制枚举能过多一半的点: 我们只需要优化一下第二个二进制枚举的部分: 首先我们先枚举选哪几行,再预处理我们需要的差值,上下,左右: sum_shang,sum_heng 然后DP查找最小值 dp[i][j]表示前i列已经选了j列: #include<cstdio> #include<cstring> #include<algorithm> using namespace std; ; int n,m,r,c; int a[maxn][m…
P2258 子矩阵 题目描述 给出如下定义: 子矩阵:从一个矩阵当中选取某些行和某些列交叉位置所组成的新矩阵(保持行与列的相对顺序)被称为原矩阵的一个子矩阵. 例如,下面左图中选取第 2 . 4行和第 2 . 4 .5 列交叉位置的元素得到一个 \(2 \times 3\)的子矩阵如右图所示. 9 3 3 3 9 9 4 8 7 4 1 7 4 6 6 6 8 5 6 9 7 4 5 6 1 的其中一个\(2 \times 3\)的子矩阵是 4 7 4 8 6 9 相邻的元素:矩阵中的某个元素与…
[BZOJ1084]最大子矩阵(动态规划) 题面 题目描述 这里有一个n*m的矩阵,请你选出其中k个子矩阵,使得这个k个子矩阵分值之和最大.注意:选出的k个子矩阵不能相互重叠. 输入输出格式 输入格式: 第一行为n,m,k(1≤n≤100,1≤m≤2,1≤k≤10),接下来n行描述矩阵每行中的每个元素的分值(每个元素的分值的绝对值不超过32767). 输出格式: 只有一行为k个子矩阵分值之和最大为多少. 输入输出样例 输入样例#1 3 2 2 1 -3 2 3 -2 3 输出样例#1 9 题解…
P2258 子矩阵 题目描述 给出如下定义: 子矩阵:从一个矩阵当中选取某些行和某些列交叉位置所组成的新矩阵(保持行与列的相对顺序)被称为原矩阵的一个子矩阵. 例如,下面左图中选取第2.4行和第2.4.5列交叉位置的元素得到一个2*3的子矩阵如右图所示. 9 3 3 3 9 9 4 8 7 4 1 7 4 6 6 6 8 5 6 9 7 4 5 6 1 的其中一个2*3的子矩阵是 4 7 4 8 6 9 相邻的元素:矩阵中的某个元素与其上下左右四个元素(如果存在的话)是相邻的. 矩阵的分值:矩阵…
P2258 子矩阵 题目描述 给出如下定义: 子矩阵:从一个矩阵当中选取某些行和某些列交叉位置所组成的新矩阵(保持行与列的相对顺序)被称为原矩阵的一个子矩阵. 例如,下面左图中选取第2.4行和第2.4.5列交叉位置的元素得到一个2*3的子矩阵如右图所示. 9 3 3 3 9 9 4 8 7 4 1 7 4 6 6 6 8 5 6 9 7 4 5 6 1 的其中一个2*3的子矩阵是 4 7 4 8 6 9 相邻的元素:矩阵中的某个元素与其上下左右四个元素(如果存在的话)是相邻的. 矩阵的分值:矩阵…
作者:zifeiy 标签:状态压缩.枚举.动态规划 题目链接:https://www.luogu.org/problem/P2258 这道题目状态压缩是肯定的,我们需要用二进制来枚举状态. 江湖上有一句话,叫做"暴力出奇迹",所以我一开始是暴力枚举的. 暴力枚举50分 下面是我暴力枚举(骗分50)的思路(后续动态规划的思想也是建立在此基础之上,所以最好还是了解一下). 首先用二进制枚举所有选择r行的行的排列,然后用二进制枚举所有选择c列的排列,然后计算选中了这r行c列的结果,与最终答案…
题目描述 给出如下定义: 子矩阵:从一个矩阵当中选取某些行和某些列交叉位置所组成的新矩阵(保持行与列的相对顺序)被称为原矩阵的一个子矩阵. 例如,下面左图中选取第22.44行和第22.44.55列交叉位置的元素得到一个2 \times 32×3的子矩阵如右图所示. 9 3 3 3 9 9 4 8 7 4 1 7 4 6 6 6 8 5 6 9 7 4 5 6 1 的其中一个2 \times 32×3的子矩阵是 4 7 4 8 6 9 相邻的元素:矩阵中的某个元素与其上下左右四个元素(如果存在的话…
题目描述 给出如下定义: 子矩阵:从一个矩阵当中选取某些行和某些列交叉位置所组成的新矩阵(保持行与列的相对顺序)被称为原矩阵的一个子矩阵. 例如,下面左图中选取第2.4行和第2.4.5列交叉位置的元素得到一个2*3的子矩阵如右图所示. 9 3 3 3 9 9 4 8 7 4 1 7 4 6 6 6 8 5 6 9 7 4 5 6 1 的其中一个2*3的子矩阵是 4 7 4 8 6 9 相邻的元素:矩阵中的某个元素与其上下左右四个元素(如果存在的话)是相邻的. 矩阵的分值:矩阵中每一对相邻元素之差…
Description Given a two-dimensional array of positive and negative integers, a sub-rectangle is any contiguous sub-array of size 1*1 or greater located within the whole array. The sum of a rectangle is the sum of all the elements in that rectangle. I…
今天做洛谷P1434 [SHOI2002]滑雪 的时候仔细想了想记忆化搜索 现在总结一下 为了描述问题的某一状态,必须用到该状态的上一状态,而描述上一状态,又必须用到上一状态的上一状态……这种用自已来定义自己的方法,称为递归定义. 而dfs作为一种回溯算法,是从问题的某一种可能出发, 搜索从这种情况出发所能达到的所有可能, 当这一条路走到” 尽头 “的时候, 再倒回出发点, 从另一个可能出发, 继续搜索. 我的理解是 dfs逻辑上是一种回溯 实现却是用递归来实现的 那么什么是记忆化搜索呢,在进行…
题目描述 给出如下定义: 子矩阵:从一个矩阵当中选取某些行和某些列交叉位置所组成的新矩阵(保持行与列的相对顺序)被称为原矩阵的一个子矩阵. 例如,下面左图中选取第2.4行和第2.4.5列交叉位置的元素得到一个2*3的子矩阵如右图所示. 9 3 3 3 9 9 4 8 7 4 1 7 4 6 6 6 8 5 6 9 7 4 5 6 1 的其中一个2*3的子矩阵是 4 7 4 8 6 9 相邻的元素:矩阵中的某个元素与其上下左右四个元素(如果存在的话)是相邻的. 矩阵的分值:矩阵中每一对相邻元素之差…
最大子矩阵和 一个M*N的矩阵,矩阵中有一些整数(有正有负),找到此矩阵的一个子矩阵,并且这个子矩阵的元素的和是最大的,输出这个最大的值. 输入 第1行:M和N,中间用空格隔开(2 <= M,N <= 500). 第2 - N + 1行:矩阵中的元素,每行M个数,中间用空格隔开.(-10^9 <= M[i] <= 10^9) 输出   输出和的最大值.如果所有数都是负数,就输出0.   输入示例 3 3 -1 3 -1 2 -1 3 -3 1 2 输出示例 7   请选取你熟悉的语…
描述 http://www.lydsy.com/JudgeOnline/problem.php?id=1084 给出一个n*m的矩阵,其中m<=2,取k个子矩阵,求最大子矩阵和. 分析 1.m=1时 dp[i][k]表示在前i列里面选k个的最优解.那么对于第i列,有选和不选两种可能.则有: dp[i][k]=max(dp[i-1][k],max{dp[x][k-1]+s1[i]-s1[x]}(0<x<i)) 2.m=2时 dp[i][j][k]表示第一行前i列,第二行前j列选k个的最优解…
描述 给定一个信封,最多只允许粘贴N张邮票,计算在给定M(N+M<=10)种邮票的情况下(假定所有的邮票数量都足够),如何设计邮票的面值,能得到最大max ,使得1-max之间的每一个邮资值都能得到. 例如,N=3,M=2,如果面值分别为1分.4分,则在l分-6分之间的每一个邮资值都能得到(当然还有8分.9分和12分):如果面值分别为1分.3分,则在1分-7分之间的每一个邮资值都能得到.可以验证当N=3,M=2时,7分就是可以得到连续的邮资最大值,所以MAX=7,面值分别为l分.3分. 样例输入…
以洛谷P1802  5倍经验日 为例 https://www.luogu.org/problem/show?pid=1802 题目背景 现在乐斗有活动了!每打一个人可以获得5倍经验!absi2011却无奈的看着那一些比他等级高的好友,想着能否把他们干掉.干掉能拿不少经验的. 题目描述 现在absi2011拿出了x个迷你装药物(嗑药打人可耻….),准备开始与那些人打了 由于迷你装一个只能管一次,所以absi2011要谨慎的使用这些药,悲剧的是,没到达最少打败该人所用的属性药了他打人必输>.<所以…
题目描述 给出如下定义: 子矩阵:从一个矩阵当中选取某些行和某些列交叉位置所组成的新矩阵(保持行与列的相对顺序)被称为原矩阵的一个子矩阵. 例如,下面左图中选取第 222 . 444 行和第 222 . 444 . 555 列交叉位置的元素得到一个 2×32 \times 32×3 的子矩阵如右图所示. 9 3 3 3 9 9 4 8 7 4 1 7 4 6 6 6 8 5 6 9 7 4 5 6 1 的其中一个 2×32 \times 32×3 的子矩阵是 4 7 4 8 6 9 相邻的元素:…
    描述 Description     某天,小x在玩一个经典小游戏——zumo.zumo游戏的规则是,给你一段长度为n的连续的彩色珠子,珠子的颜色不一定完全相同,但是,如果连续相同颜色的珠子大于等于k个,这些珠子就会消失.当然,最初的状态可能不必要直接消掉一些珠子(见样例).现在你有无穷个所有颜色的珠子,并且你可以在任意地方插入珠子.现在提出问题:给你一个固定的状态,你最少需要用多少个小球,才能将所有的小球消去.               输入格式 Input Format     第…
我的代码上去就是 直接纯粹的  暴力  .   居然没有超时   200ms  可能数据比较小   一会在优化 #include<stdio.h> #include<string.h> #include<math.h> #include<iostream> #include<limits.h> #include<algorithm> #include<queue> #include<vector> #inclu…
最大子矩阵 bzoj-1084 SCOI-2005 题目大意:给定一个n*m的矩阵,请你选出k个互不重叠的子矩阵使得它们的权值和最大. 注释:$1\le n \le 100$,$1\le m\le 2$,$1\le k\le 10$. 想法:不会...看了数据范围..卧槽?m<=2?????我们就可以进行一个简单的轮廓线dp. 首先,先分m==1和m==2分类讨论,m==1不说了 m==2 令f[k][i][j]是第一列到了i,第二列到了j,已经选取了k个矩形的最大权值. 转移:有3种转移方式:…
题目传送 表示一开始也是一脸懵逼,虽然想到了DP,但面对多变的状态不知从何转移及怎么合理记录状态.之(借鉴大佬思路)后,豁然开朗,于是在AC后分享一下题解. 发现数据范围出奇地小,不过越是小的数据范围,算法的灵活性就越大.小数据对我们各个算法的组合及时间复杂度的掌握要求很高.面对二维的最优化选择,其实我们可以先通过搜索枚举出行的所有选择,存到一个数组team中,然后在行已经确认的情况下,跑一遍一维的DP:设dp[j][i]为在前j列选择i列的最优情况(为了方便,要求第i选择的列一定是第j列).则…
传送 一道看起来就很暴力的题. 这道题不仅暴力,还要用正确的姿势打开暴力. 因为子矩阵的参数有两个,一个行一个列(废话) 我们一次枚举两个参数很容易乱对不对?所以我们先枚举行,再枚举列 枚举完行,列,就计算一次当前子矩阵的分数,与ans取min. 代码: 但是复杂度会高到爆炸.来我们深吸一口O2. // luogu-judger-enable-o2 #include<bits/stdc++.h> using namespace std; ][],n,m,r,c,ans=,ch[],cl[];…
题目描述 给出如下定义: 子矩阵:从一个矩阵当中选取某些行和某些列交叉位置所组成的新矩阵(保持行与列的相对顺序)被称为原矩阵的一个子矩阵. 例如,下面左图中选取第2.4行和第2.4.5列交叉位置的元素得到一个2*3的子矩阵如右图所示. 9 3 3 3 9 9 4 8 7 4 1 7 4 6 6 6 8 5 6 9 7 4 5 6 1 的其中一个2*3的子矩阵是 4 7 4 8 6 9 相邻的元素:矩阵中的某个元素与其上下左右四个元素(如果存在的话)是相邻的. 矩阵的分值:矩阵中每一对相邻元素之差…
题目传送门OpenJ_Bailian 4103 描述 有一个方格矩阵,矩阵边界在无穷远处.我们做如下假设:a.    每走一步时,只能从当前方格移动一格,走到某个相邻的方格上:b.    走过的格子立即塌陷无法再走第二次:c.    只能向北.东.西三个方向走:请问:如果允许在方格矩阵上走n步,共有多少种不同的方案.2种走法只要有一步不一样,即被认为是不同的方案. 输入 允许在方格上行走的步数n(n <= 20) 输出 计算出的方案数量 样例输入 2 样例输出 7 解题思路: 1.递归:从 (i…
考虑按顺序暴搜子序列.如果序列中的数两两不同,显然每次给上一个找到的子序列添上后缀最小值,即为下一个要找的子序列.如果不能再加了就回溯继续考虑后缀次小.第三小……值,直到找到k个子序列. 有重复的数后,考虑后缀k小值只取第一次出现的位置,并在每找到一个子序列后就统计其出现次数.显然这样就能找到所有要找的子序列,因为序列末端选择位置更靠前,后面的选择更多. 求一个序列在另一个序列里的出现次数显然可以dp,即设f[i][j]为第一个序列的i位置和第二个序列的j位置匹配的方案数.当然答案序列可能很长,…
单纯的暴搜似乎还是很好写的,然而过不了.出完顺子之后答案是可以dp出来的,于是大力搜然后大力dp就好了. dp时强行讨论完了几乎所有拆牌情况,理性愉悦一发. #include<iostream> #include<cstdio> #include<cmath> #include<cstdlib> #include<cstring> #include<algorithm> using namespace std; int read()…
233今天蒟蒻我连文化课都没听光想着这个了 然后我调了一下午终于过了!!! 一看数据范围似乎是状压,然而216等于65536.开一个65536*65536的二维数组似乎不太现实. 所以Rqy在四月还是几月给我们讲这道题的时候说要半DFS半DP,时间复杂度O(2n*n3) 怎么个半DFS半DP法呢? 其实我没DFS.所以这个问题不重要. 我真的没用DFS.枚举从1到2n-1的所有集合,把二进制数中1的个数不等于r的都筛掉.然后对于每个状态,预处理出每一列内部的代价,预处理出列与列之间的代价,然后进…
http://blog.csdn.net/liufeng_king/article/details/8632430 1.最大子段和问题      问题定义:对于给定序列a1,a2,a3……an,寻找它的某个连续子段,使得其和最大.如( -2,11,-4,13,-5,-2 )最大子段是{ 11,-4,13 }其和为20. (1)枚举法求解 枚举法思路如下: 以a[0]开始: {a[0]}, {a[0],a[1]},{a[0],a[1],a[2]}……{a[0],a[1],……a[n]}共n个 以a…
1.最大子段和问题      问题定义:对于给定序列a1,a2,a3……an,寻找它的某个连续子段,使得其和最大.如( -2,11,-4,13,-5,-2 )最大子段是{ 11,-4,13 }其和为20. (1)枚举法求解 枚举法思路如下: 以a[0]开始: {a[0]}, {a[0],a[1]},{a[0],a[1],a[2]}……{a[0],a[1],……a[n]}共n个 以a[1]开始: {a[1]}, {a[1],a[2]},{a[1],a[2],a[3]}……{a[1],a[2],………
1.前言 正式开始的第一周的任务--把NOIP2010至NOIP2015的所有D1/2的T2/3写出暴力.共22题. 暴力顾名思义,用简单粗暴的方式解题,不以正常的思路思考.能够较好的保证正确性,但是最大的问题在于效率.搞OI这么久,每次考试也经常纠结于暴力与正解之间,其实这两者概念上本来就没有明显的界限,是一组相对概念. 下面尽可能的不提到正解,但是如果正解容易到我都能够轻松秒的话就还是说一下了. 普通的DFS/BFS搜索是暴力,但暴力不局限于此.根据向总的话,记忆化搜索亦属于暴力,名字逼格这…