基于单层决策树的AdaBoost算法源码 Mian.py # -*- coding: utf-8 -*- # coding: UTF-8 import numpy as np from AdaBoost import AdaBoost from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score def main(): # load data dataset = np…
这里整理一下实验课实现的基于单层决策树的弱分类器的AdaBoost算法. 由于是初学,实验课在找资料的时候看到别人的代码中有太多英文的缩写,不容易看懂,而且还要同时看代码实现的细节.算法的原理什么的,就体验很不好. 于是我这里代码中英文没有用缩写,也尽量把思路写清楚. 基本概念 集成学习:通过组合多个基分类器(base classifier)来完成学习任务,基分类器一般采用弱学习器. 弱学习器:只学习正确率仅仅略优于随机猜测的学习器.通过集成方法,就能组合成一个强学习器. Bagging和Boo…
Atitit 图像清晰度 模糊度 检测 识别 评价算法 源码实现attilax总结 1.1. 原理,主要使用像素模糊后的差别会变小1 1.2. 具体流程1 1.3. 提升性能 可以使用采样法即可..1 1.4. 实现代码1 1.1. 原理,主要使用像素模糊后的差别会变小 通过计算横向前后俩点像素的差异..然后累加即可.. 1.2. 具体流程 图片灰度化,这样可以只保留hsv分量了...然后读取v分量,就是明亮度了.. Hs色相和饱和度全部去除了..   比较v分量的差异即可.. 1.3. 提升性…
Mahout版本:0.7,hadoop版本:1.0.4,jdk:1.7.0_25 64bit. 首先来总结一下 mahout算法源码分析之Collaborative Filtering with ALS-WR (三),这个写了三篇,基本都是写QR分解,然后矩阵进过处理得到U或者M的过程,但是还是没有讲出个所以然来.mahout官网上说其是根据这篇文献得来的Large-scale Parallel Collaborative Filtering for the Netflix Prize,本来我是想…
Mahout版本:0.7,hadoop版本:1.0.4,jdk:1.7.0_25 64bit. 额,好吧,心头的一块石头总算是放下了.关于Collaborative Filtering with ALS-WR这个算法中的那个QR分析,真心是太复杂了.以至于国庆后面三天基本都是在郁闷中过来的,想着自己的矩阵学的是有多差呀...后来算法验证弄懂之后才发觉,尼玛,java太坑爹了吧,矩阵求个逆,有那么复杂么!!! 下面来开始验证:首先应该获得了两个变量分别是Ai和Vi,如果这两个变量不知道是啥东西,可…
Mahout版本:0.7,hadoop版本:1.0.4,jdk:1.7.0_25 64bit. mahout算法源码分析之Collaborative Filtering with ALS-WR 这个算法的并行主要就应该是ParallelALSFactorizationJob这里的并行了,下图是这个Job的大部分操作: 这里分析并行就是看每个job任务是否可以出现多个map或者reduce即可. (1)首先分析前面三个itemRatings,对应的输入是原始文件,如果原始文件很大的话,那么这个任务…
diff.js列表对比算法 源码分析 npm上的代码可以查看 (https://www.npmjs.com/package/list-diff2) 源码如下: /** * * @param {Array} oldList 原始列表 * @param {Array} newList 新列表 * @param {String} key 键名称 * @return {Object} {children: [], moves: [] } * children 是源列表 根据 新列表返回 移动的新数据,比…
基于Eclipse IDE的Ardupilot飞控源码阅读环境搭建 作者:Awesome 日期:2017-10-21 需准备的软件工具 Ardupilot飞控源码 PX4 toolchain JAVA开发环境,注意必须是32位的软件. 1.Ardupilot飞控源码下载 下载链接 https://github.com/ArduPilot/ardupilot,下载说明如下图: 2.PX4 toolchain工具下载与安装 下载链接 http://firmware.ardupilot.org/Too…
本課主題 Job Stage 划分算法解密 Task 最佳位置算法實現解密 引言 作业调度的划分算法以及 Task 的最佳位置的算法,因为 Stage 的划分是DAGScheduler 工作的核心,这也是关系到整个作业有集群中该怎么运行:其次就是数据本地性,Spark 一舨的代码都是链式表达的,这就让一个任务什么时候划分成 Stage,在大数据世界要追求最大化的数据本地性,所有最大化的数据本地性就是在数据计算的时候,数据就在内存中.最后就是 Spark 的实现算法时候的略的怎么样.希望这篇文章能…
这一篇是接着上一篇写的, 上一篇的地址是:基于JDK1.8版本的hashmap源码分析(一)     /**     * 返回boolean类型的值,当集合中包含key的键值,就返回true,否则就返回false:和get(key)方法调用的是同一个底层实现方法getNode()     */ public boolean containsKey(Object key) { return getNode(hash(key), key) != null; } /** *这个方法主要是实现在map中…