java实现Kruskal算法】的更多相关文章

1 问题描述 何为Kruskal算法? 该算法功能:求取加权连通图的最小生成树.假设加权连通图有n个顶点,那么其最小生成树有且仅有n - 1条边. 该算法核心思想:从给定加权连通图中,选择当前未被选择的,不能形成回路且权值最小的边,加入到当前正在构造的最小生成树中. 2 解决方案 2.1 构造最小生成树示例 下面请看一个具体示例: 给定一个加权连通图,其包含5个顶点,分别为:1,2,3,4,5.包含7条边,按照从小到大排序依次为: 1-2,5 2-3,5 3-5,6 2-4,12 4-5,12…
/** * sample Kruskal.java Description: * kruskal算法的思想是找最小边,且每次找到的边不会和以找出来的边形成环路,利用一个一维数组group存放当前顶点所在连通图标示(每条最小边,属于一个连通图),直到顶点都找完 * 1.0 YESUN Jul 18, * 2013 8:48:28 AM Create. ChangeLog: */ public class Kruskal { /** * Description: * * @param args *…
前面分别通过C和C++实现了克鲁斯卡尔,本文介绍克鲁斯卡尔的Java实现. 目录 1. 最小生成树 2. 克鲁斯卡尔算法介绍 3. 克鲁斯卡尔算法图解 4. 克鲁斯卡尔算法分析 5. 克鲁斯卡尔算法的代码说明 6. 克鲁斯卡尔算法的源码 转载请注明出处:http://www.cnblogs.com/skywang12345/ 更多内容:数据结构与算法系列 目录 最小生成树 在含有n个顶点的连通图中选择n-1条边,构成一棵极小连通子图,并使该连通子图中n-1条边上权值之和达到最小,则称其为连通网的…
目录 1 问题描述 2 解决方案 2.1 构造最小生成树示例 2.2 伪码及时间效率分析 2.3 具体编码(最佳时间效率)   1 问题描述 何为Kruskal算法? 该算法功能:求取加权连通图的最小生成树.假设加权连通图有n个顶点,那么其最小生成树有且仅有n - 1条边. 该算法核心思想:从给定加权连通图中,选择当前未被选择的,不能形成回路且权值最小的边,加入到当前正在构造的最小生成树中. 2 解决方案 2.1 构造最小生成树示例 下面请看一个具体示例: 给定一个条边,按照从小到大排序依次为:…
在边赋权图中,权值总和最小的生成树称为最小生成树.构造最小生成树有两种算法,分别是prim算法和kruskal算法.在边赋权图中,如下图所示: 在上述赋权图中,可以看到图的顶点编号和顶点之间邻接边的权值,若要以上图来构建最小生成树.结果应该如下所示: 这样构建的最小生成树的权值总和最小,为17 在构建最小生成树中,一般有两种算法,prim算法和kruskal算法 在prim算法中,通过加入最小邻接边的方法来建立最小生成树算法.首先构造一个零图,在选一个初始顶点加入到新集合中,然后分别在原先的顶点…
Prim算法 1.概览 普里姆算法(Prim算法),图论中的一种算法,可在加权连通图里搜索最小生成树.意即由此算法搜索到的边子集所构成的树中,不但包括了连通图里的所有顶点(英语:Vertex (graph theory)),且其所有边的权值之和亦为最小.该算法于1930年由捷克数学家沃伊捷赫·亚尔尼克(英语:Vojtěch Jarník)发现:并在1957年由美国计算机科学家罗伯特·普里姆(英语:Robert C. Prim)独立发现:1959年,艾兹格·迪科斯彻再次发现了该算法.因此,在某些场…
本章介绍克鲁斯卡尔算法.和以往一样,本文会先对克鲁斯卡尔算法的理论论知识进行介绍,然后给出C语言的实现.后续再分别给出C++和Java版本的实现. 目录 1. 最小生成树 2. 克鲁斯卡尔算法介绍 3. 克鲁斯卡尔算法图解 4. 克鲁斯卡尔算法分析 5. 克鲁斯卡尔算法的代码说明 6. 克鲁斯卡尔算法的源码 转载请注明出处:http://www.cnblogs.com/skywang12345/ 更多内容:数据结构与算法系列 目录 最小生成树 在含有n个顶点的连通图中选择n-1条边,构成一棵极小…
原文:算法起步之Kruskal算法 说完并查集我们接着再来看这个算法,趁热打铁嘛.什么是最小生成树呢,很形象的一个形容就是铺自来水管道,一个村庄有很多的农舍,其实这个村庄我们可以看成一个图,而农舍就是图上的每个节点,节点之间有很多的路径,而铺自来水管道目的就是为了让每家都能用上自来水,而至于自来水怎么铺就不关心了,而铺管子的人就会想如何才能最生材料,那么最省材料的一条路径就是我们这个图的最小生成树.而如何去构建一个最小生成树呢?这个就用到了我们之前说的贪心策略.这里的觉得点就是一直寻找安全边,所…
Kruskal算法用于计算一个图的最小生成树.这个算法的过程例如以下: 依照边的权重从小到达进行排序 依次将每条边添加到最小生成树中,除非这条边会造成回路 实现思路 第一个步骤须要对边进行排序,排序方法在之前的章节中已经介绍了非常多,能够使用优先级队列进行实现,也能够使用归并排序进行实现,这里採用归并排序. 第二个步骤须要推断是否会造成回路.假设添加一条边会形成回路,那么这条边在添加之前,它两端的顶点必然是可以连通的.因此,在算法中使用并查集实现高效的推断. 代码 import java.uti…
首先我们获取这个图 根据这个图我们可以得到对应的二维矩阵图数据 根据kruskal算法的思想,首先提取所有的边,然后把所有的边进行排序 思路就是把这些边按照从小到大的顺序组装,至于如何组装 这里用到并查算法的思路 * 1.makeset(x),也就是生成单元素集合,也就是每一个节点 * 2.find(x) 返回一个包含x的子集,这个集合可以看成一个有根树 * 3.union(x,y) 构造分别包含x和y的不相交的子集子集Sx和Sy的并集,这里尤为关键:!!!! 了解到这些思路之后,开始我们的算法…