概述 MobileNetsV2是基于一个流线型的架构,它使用深度可分离的卷积来构建轻量级的深层神经网,此模型基于 MobileNetV2: Inverted Residuals and Linear Bottlenecks 中提出的模型结构实现.可以用图像分类任务,比如猫狗分类.花卉分类等等.用户提供一系列带有标注的数据集,该算法会载入在ImageNet-1000上的预训练模型,在用户数据集上做迁移学习.训练后生成的模型可直接在ModelArts平台部署为在线服务或批量服务,同时支持使用CPU.…
摘要:简单介绍Raft协议的原理.以及存储节点(Pinetree)如何应用 Raft实现复制的一些工程实践经验. 1.引言 在华为分布式数据库的工程实践过程中,我们实现了一个计算存储分离. 底层存储基于Raft协议进行复制的分布式数据库系统原型.下面是它的架构图. 计算节点生成日志经过封装后通过网络下发到存储节点,在Raft层达成一致后日志被应用到状态机wal Engine,完成日志的回放和数据的存储管理. 下面简单介绍一下Raft的原理.以及存储节点(Pinetree)如何应用 Raft实现复…
用户模型简介 知乎 AI 用户模型服务于知乎两亿多用户,主要为首页.推荐.广告.知识服务.想法.关注页等业务场景提供数据和服务, 例如首页个性化 Feed 的召回和排序.相关回答等用到的用户长期兴趣特征,问题路由.回答排序中用到的 TPR「作者创作权威度」,广告定向投放用到的基础属性等. 主要功能 提供的数据和功能主要有: 用户兴趣:长期兴趣.实时兴趣.分类兴趣.话题兴趣.keyword 兴趣.作者创作权威度等, 用户 Embedding 表示:最近邻用户.人群划分.特定用户圈定等, 用户社交属…
如何使用华为云服务一键构建部署发布前端和Node.js服务 构建部署,一直是一个很繁琐的过程 作为开发,最害怕遇到版本发布,特别是前.后端一起上线发布,项目又特别多的时候. 例如你有10个项目,前后端都要同时发布,那么就需要多次合并代码.构建,重复很多动作..而且还要去关心构建机器环境是不是变了?配置是否能扛住同时构建多个应用?人为的操作次数多了,就很难保证万无一失. 那这种局面怎么破? 是不是要考虑从技术角度来提效? 假如我把所有的构建.发布都迁移到云端,可以一键push代码,然后自动完成构建…
摘要:一文带你用小熊派开发板动手做土壤湿度传感器. 一.实验准备 1.实验环境 一块stm32开发板(推荐使用小熊派),以及数据线 已经安装STM32CubeMX 已经安装KeilMDK,并导入stm32开发板对应的芯片包(小熊派使用的是STM32L431RCT6) 准备一个串口调试助手,我使用的是UartAssist(包含在附件中) 一个土壤湿度传感器模块 2.目标效果 通过CubeMX创建工程并配置参数 获取stm32以硬件IIC获取SHT20传感器值(通过SHT20数据手册转化) 串口1重…
在web应用程序中添加定时任务,Quartz的简单介绍可以参看博文<Quartz应用实践入门案例一(基于Web应用)> .其实一旦学会了如何应用开源框架就应该很容易将这中框架应用与自己的任何程序中.只要你的程序中需要这项功能!但是对于一些刚开始学习某种框架的菜鸟而言,这似乎就不是那么简单了.如果在学习开源框架API的同时,能有一两个案例小程序配着其API去看,那应该就是事半功倍了. 本文是在自己学习源码和网上查找资料的基础上完成的,将详细叙述在java工程中如何巧妙的融入Quartz框架,小案…
数据挖掘案例:基于 ReliefF和K-means算法的应用 数据挖掘方法的提出,让人们有能力最终认识数据的真正价值,即蕴藏在数据中的信息和知识.数据挖掘(DataMiriing),指的是从大型数据库或数据仓库中提取人们感兴趣的知识,这些知识是隐含的.事先未知的潜在有用信息,数据挖掘是目前国际上,数据库和信息决策领域的最前沿研究方向之一.因此分享一下很久以前做的一个小研究成果.也算是一个简单的数据挖掘处理的例子. 1.数据挖掘与聚类分析概述 数据挖掘一般由以下几个步骤: (l)分析问题:源数据数…
摘要:基于HiLens Kit已经基本开发完成,可部署到HiLens Kit,模型的选择为基于DarkNet53的YOLOv3模型,权重为基于COCO2014训练的数据集,而车道线的检测是基于OpenCV的传统方法实现的,可通过ModelArts AI Gallery与HiLens Kit全流程端云协同开发部署. 点击传送门,先来看看最终视频效果吧→→(PS:请忽略背景音乐)! 主体流程介绍: (可选,忽略亦可,取决于摄像头质量,对于相机畸变较大的需要先计算相机的畸变矩阵和失真系数,对图片进行校…
1 贝叶斯方法 长久以来,人们对一件事情发生或不发生的概率,只有固定的0和1,即要么发生,要么不发生,从来不会去考虑某件事情发生的概率有多大,不发生的概率又是多大.而且概率虽然未知,但最起码是一个确定的值.比如如果问那时的人们一个问题:“有一个袋子,里面装着若干个白球和黑球,请问从袋子中取得白球的概率是多少?”他们会想都不用想,会立马告诉你,取出白球的概率就是1/2,要么取到白球,要么取不到白球,即θ只能有一个值,而且不论你取了多少次,取得白球的概率θ始终都是1/2,即不随观察结果X 的变化而变…
本文转载自:https://www.cnblogs.com/zhoulujun/p/8893393.html 1 贝叶斯方法 长久以来,人们对一件事情发生或不发生的概率,只有固定的0和1,即要么发生,要么不发生,从来不会去考虑某件事情发生的概率有多大,不发生的概率又是多大.而且概率虽然未知,但最起码是一个确定的值.比如如果问那时的人们一个问题:“有一个袋子,里面装着若干个白球和黑球,请问从袋子中取得白球的概率是多少?”他们会想都不用想,会立马告诉你,取出白球的概率就是1/2,要么取到白球,要么取…
原文:微服务实战(四):服务发现的可行方案以及实践案例 - DockOne.io 这是关于使用微服务架构创建应用系列的第四篇文章.第一篇介绍了微服务架构的模式,讨论了使用微服务架构的优缺点.第二和第三篇描述了微服务架构内部的通讯机制.这篇文章中,我们将会探讨服务发现相关问题. 为什么要使用服务发现? 设想一下,我们正在写代码使用了提供REST API或者Thrift API的服务,为了完成一次服务请求,代码需要知道服务实例的网络位置(IP地址和端口).传统应用都运行在物理硬件上,服务实例的网络位…
DDD实践案例:引入事件驱动与中间件机制来实现后台管理功能 一.引言 在当前的电子商务平台中,用户下完订单之后,然后店家会在后台看到客户下的订单,然后店家可以对客户的订单进行发货操作.此时客户会在自己的订单状态看到店家已经发货.从上面的业务逻辑可以看出,当用户下完订单之后,店家或管理员可以对客户订单进行跟踪和操作.上一专题我们已经实现创建订单的功能,则接下来自然就是后台管理功能的实现了.所以在这一专题中将详细介绍如何在网上书店案例中实现后台管理功能. 二.后台管理中的权限管理的实现 后台管理中,…
基于ReliefF和K-means算法的医学应用实例 数据挖掘方法的提出,让人们有能力最终认识数据的真正价值,即蕴藏在数据中的信息和知识.数据挖掘 (DataMiriing),指的是从大型数据库或数据仓库中提取人们感兴趣的知识,这些知识是隐含的.事先未知的潜在有用信息,数据挖掘是目前国际上,数据库和信息决策领域的最前沿研究方向之一.因此分享一下很久以前做的一个小研究成果.也算是一个简单的数据挖掘处理的例子. 1.数据挖掘与聚类分析概述 数据挖掘一般由以下几个步骤: (l)分析问题:源数据数据库必…
AI技术已成为推动营销迭代的重要驱动力.AI营销高速发展的同时,积累了海量的广告数据和用户数据.如何有效应用这些数据,是大数据技术落地营销领域的关键,也是检测智能营销平台竞争力的标准. 讯飞AI营销云一直致力于以AI赋能营销升级.为挖掘AI营销算法领域的顶尖人才,推动数字营销的技术革新,科大讯飞将于9月1日至10月25日举办“2018科大讯飞AI营销算法大赛”.   大赛介绍 “2018科大讯飞AI营销算法大赛”将提供讯飞AI营销云的海量广告投放数据,参赛选手通过人工智能技术构建预测模型预估用户…
SVM是Support Vector Machine的缩写,中文叫支持向量机,通过它可以对样本数据进行分类.以股票为例,SVM能根据若干特征样本数据,把待预测的目标结果划分成“涨”和”跌”两种,从而实现预测股票涨跌的效果. 1 通过简单案例了解SVM的分类作用 在Sklearn库里,封装了SVM分类的相关方法,也就是说,我们无需了解其中复杂的算法,即可用它实现基于SVM的分类.通过如下SimpleSVMDemo.py案例,我们来看下通过SVM库实现分类的做法,以及相关方法的调用方式. 1 #!/…
实践案例 <中小型Web架构>3 Memcached配置管理 本章节参考<SaltStack技术入门与实践>,感谢该书作者: 刘继伟.沈灿.赵舜东 Memcached介绍 Memcached是一个高性能的分布式内存对象缓存系统,用于动态Web应用以减轻数据库负载.它通过在内存中缓存数据和对象来减少读取数据库的次数,从而提高动态数据库驱动网站的访问速度.Memcached基于一个存储键/值对的hashmap.其守护进程(daemon )是用C写的,但是客户端可以用任何语言来编写,并通…
  一.案例背景 在产品迭代过程中,通常需要根据用户的属性进行归类,也就是通过分析数据,对用户进行归类,以便于在推送及转化过程中获得更大的收益. 本案例是基于某互联网公司的实际用户购票数据为研究对象,对用户购票的时间,购买的金额进行了采集,每个用户用手机号来区别唯一性.数据分析人员根据用户购买的时间和金额,通过建立RFM模型,来计算出用户最近最近一次购买的打分,用户购买频率的打分,用户购买金额的打分,然后根据三个分数进行一个加权打分,和综合打分.业务人员可以根据用户的打分情况,对不同的用户进行个…
转自:https://segmentfault.com/a/1190000002416071 前言 前段时间无聊或有聊地做了几个移动端的HTML5游戏.放在不同的移动端平台上进行测试后有了诡异的发现,有些手机的动画会“快”一点,有些手机的动画会“慢”一点,有些慢得还不是一两点. 通过查找资料发现,基于帧的算法(Frame-based)来实现动画会导致不同帧率的平台体验不一致,而基于时间(Time-based)的动画算法可以很好地改良这种情况,让不同帧率的情况下都能达到较为统一的速度上的体验. 本…
最小支撑树树--Prim算法,基于优先队列的Prim算法,Kruskal算法,Boruvka算法,“等价类”UnionFind 最小支撑树树 前几节中介绍的算法都是针对无权图的,本节将介绍带权图的最小支撑树(minimum spanning tree)算法.给定一个无向图G,并且它的每条边均权值,则MST是一个包括G的所有顶点及边的子集的图,这个子集保证图是连通的,并且子集中所有边的权值之和为所有子集中最小的. 本节中介绍三种算法求解图的最小生成树:Prim算法.Kruskal算法和Boruvk…
基于mahout的itembased算法 事实上mahout分布式上仅仅是实现了部分算法.比方推荐算法中Item-based和slopone都有hadoop实现和单机版实现,User-based没有分布式实现. Mahout已实现的算法(单机版和分布式版) https://mahout.apache.org/users/basics/algorithms.html 大多数情况下,我们仅仅是调用mahout的算法,要么单机版,要么分布式版. 那么mahout的分布式算法怎么调用呢? 事实上maho…
港真,自己一直非常希望做算法工程师,所以自己现在开始对现在常用的大数据算法进行不断地学习,今天了解到的算法,就是我们生活中无处不在的推荐系统算法. 其实,向别人推荐商品是一个很常见的现象,比如我用了一个好的商品,向朋友安利之类的.在以前广告系统不发达的时候,我们也是靠口口相传来进行商品的推广.那么为什么,现在推荐系统变的非常重要了呢?,在以前,我们的商品不像现在的物品一样琳琅满目,我们有时间,可以把商品都浏览一遍在进行选择,因为我们都想选择所有商品中最好的,而现在,由于资源的众多,我们不会用大把…
Shiro 核心功能案例讲解 基于SpringBoot 有源码 从实战中学习Shiro的用法.本章使用SpringBoot快速搭建项目.整合SiteMesh框架布局页面.整合Shiro框架实现用身份认证,授权,数据加密功能.通过本章内容,你将学会用户权限的分配规则,SpringBoot整合Shiro的配置,Shiro自定义Realm的创建,Shiro标签式授权和注解式授权的使用场景,等实战技能,还在等什么,快来学习吧! 技术:SpringBoot,Shiro,SiteMesh,Spring,Sp…
CORDIC(Coordinate Rotation Digital Computer)算法即坐标旋转数字计算方法,是J.D.Volder1于1959年首次提出,主要用于三角函数.双曲线.指数.对数的计算.该算法通过基本的加和移位运算代替乘法运算,使得矢量的旋转和定向的计算不再需要三角函数.乘法.开方.反三角.指数等函数. 本文是基于FPGA实现Cordic算法的设计与验证,使用Verilog HDL设计,初步可实现正弦.余弦.反正切函数的实现.将复杂的运算转化成FPGA擅长的加减法和乘法,而乘…
基于百度AI的人脸识别及语音合成课题 课题需求 (1)人脸识别 在Web界面上传人的照片,后台使用Java技术接收图片,然后对图片进行解码,调用云平台接口识别人脸特征,接收平台返回的人员年龄.性别.颜值等信息,将信息返回到Web界面进行显示. (2)人脸比对 在Web界面上传两张人的照片,后台使用Java技术接收图片,然后对图片进行解码,调用云平台接口比对照片信息,返回相似度. (3)语音识别 在Web页面上传语音文件,判断语音文件格式,如果不是wav格式进行转码处理,然后调用平台接口进行识别,…
参考美团文档:https://tech.meituan.com/2017/04/21/mt-leaf.html Twitter-Snowflake算法产生的背景相当简单,为了满足Twitter每秒上万条消息的请求,每条消息都必须分配一条唯一的id,这些id还需要一些大致的顺序(方便客户端排序),并且在分布式系统中不同机器产生的id必须不同. 性能测试数据: Snowflake算法核心 把时间戳,工作机器id,序列号组合在一起. 41-bit的时间可以表示(1L<<41)/(1000L*3600…
https://blog.csdn.net/qq_32690999/article/details/77434381 因为开发了一个新闻推荐系统的模块,在推荐算法这一块涉及到了基于内容的推荐算法(Content-Based Recommendation),于是借此机会,基于自己看了网上各种资料后对该分类方法的理解,用尽量清晰明了的语言,结合算法和自己开发推荐模块本身,记录下这些过程,供自己回顾,也供大家参考~ 目录 一.基于内容的推荐算法 + TFIDF 二.在推荐系统中的具体实现技巧 正文 一…
一.算法思想: DBSCAN(Density-Based Spatial Clustering of Applications with Noise)是一个比较有代表性的基于密度的聚类算法.与划分和层次聚类方法不同,它将簇定义为密度相连的点的最大集合,能够把具有足够高密度的区域划分为簇,并可在噪声的空间数据库中发现任意形状的聚类. DBSCAN中的几个定义: Ε邻域:给定对象半径为Ε内的区域称为该对象的Ε邻域: 核心对象:如果给定对象Ε领域内的样本点数大于等于MinPts,则称该对象为核心对象:…
原文:http://xiaoxia.org/2011/12/18/map-reduce-program-of-rmm-word-count-on-hadoop/ 在Hadoop上运行基于RMM中文分词算法的MapReduce程序 23条回复 我知道这个文章标题很“学术”化,很俗,让人看起来是一篇很牛B或者很装逼的论文!其实不然,只是一份普通的实验报告,同时本文也不对RMM中文分词算法进行研究.这个实验报告是我做高性能计算课程的实验里提交的.所以,下面的内容是从我的实验报告里摘录出来的,当作是我学…
代码地址如下:http://www.demodashi.com/demo/13677.html 需求 之前做过一个无人车需要自主寻找最佳路径,所以研究了相关的寻路算法,最终选择A算法,因为其简单易懂,是入门级的寻路算法. 但是在验证的算法的时候,没有直观的感受,总是觉得会有什么问题,所以我就写了一个可视化的A算法验证,界面基于Qt开发. 项目说明 本项目主要分为2个部分,Qt绘制网格和A算法实现.下面可以看到,界面的实现和A算法的实现基本上是分离的.也就是说可以单独使用,比如Qt网格绘制,可以用…
基于比较的排序算法的最优下界为什么是O(nlogn) 发表于2013/12/21 16:15:50  1024人阅读 分类: Algorithm 1.决策二叉树 回答这个问题之前我们先来玩一个猜数字的游戏,我从1到8中挑一个数字出来让你来猜,每回合你都可以问我一个问题,我的回答“是”或“不是”(1或0),那么你至少需要几个回合才能保证猜出这个数字?比较符合这个游戏精神的玩法是从自己的幸运数字(比如我的是7)开始猜起,一个一个地问我“是不是X?”,可能你的运气足够好,一个回合就能够猜对,但是在最坏…