理解Miller-Rabbin算法】的更多相关文章

0.引入 那年,机房里来了个新教练, 口胡鼻祖lhy 第一节课,带我们体验了暴力的神奇, 第二节课,带我们体验了随机数的玄妙, -- 那节课,便是我第一次接触到Miller Rabbin算法, 直到现在,终于搞懂了一些. 该算法(名字过长,不想打了)主要是解决快速判断一个极大的数是否是质数的问题. 我们知道,能保证正确的最快的算法,就是的复杂度,不能再小了,对于一个很大的long long,复杂度达到O(1e9) 但是该算法却能在的时间复杂度内判断,(如果用了光速乘,还可以变为) 那究竟是为什么…
何为Miller Rabin算法 首先看一下度娘的解释(如果你懒得读直接跳过就可以反正也没啥乱用:joy:) Miller-Rabin算法是目前主流的基于概率的素数测试算法,在构建密码安全体系中占有重要的地位.通过比较各种素数测试算法和对Miller-Rabin算法进行的仔细研究,证明在计算机中构建密码安全体系时, Miller-Rabin算法是完成素数测试的最佳选择.通过对Miller-Rabin 算 法底层运算的优化,可以取得较以往实现更好的性能.[1]  随着信息技术的发展.网络的普及和电…
BZOJ 3667: Rabin-Miller算法 Time Limit: 60 Sec  Memory Limit: 512 MBSubmit: 1044  Solved: 322[Submit][Status][Discuss] Description   Input 第一行:CAS,代表数据组数(不大于350),以下CAS行,每行一个数字,保证在64位长整形范围内,并且没有负数.你需要对于每个数字:第一,检验是否是质数,是质数就输出Prime 第二,如果不是质数,输出它最大的质因子是哪个.…
如何理解C4.5算法解决了ID3算法的偏向于选择取值较多的特征问题 考虑一个极端情况,某个属性(特征)的取值很多,以至于每一个取值对应的类别只有一个.这样根据\[H(D) - H(D|A)\]可以得知后面的那一项的值为0.这样得到信息增益会很大.C4.5算法加了一个惩罚项\[H_A(D) = -\sum_{i=1}^n\dfrac{|D_i|}{|D|}\log_2\dfrac{|D_i|}{|D|}\],如果\(D_i\)越小,那么该惩罚项的值就越大.这样便解决了ID3算法的问题.…
 100天搞定机器学习(Day1-34) 100天搞定机器学习|Day35 深度学习之神经网络的结构 100天搞定机器学习|Day36 深度学习之梯度下降算法 本篇为100天搞定机器学习之第37天,亦为3Blue1Brown<深度学习之反向传播算法>学习笔记. 上集提到我们要找到特定权重和偏置,从而使代价函数最小化,我们需要求得代价函数的负梯度,它告诉我们如何改变连线上的权重偏置,才能让代价下降的最快.反向传播算法是用来求这个复杂到爆的梯度的. 上一集中提到一点,13000维的梯度向量是难以想…
<看图轻松理解数据结构和算法>,主要使用图片来描述常见的数据结构和算法,轻松阅读并理解掌握.本系列包括各种堆.各种队列.各种列表.各种树.各种图.各种排序等等几十篇的样子. 关于LSM树 LSM树,即日志结构合并树(Log-Structured Merge-Tree).其实它并不属于一个具体的数据结构,它更多是一种数据结构的设计思想.大多NoSQL数据库核心思想都是基于LSM来做的,只是具体的实现不同.所以本来不打算列入该系列,但是有朋友留言了好几次让我讲LSM树,那么就说一下LSM树. LS…
0.1 一些闲话 最近一次更新是在2019年11月12日.之前的文章有很多问题:当我把我的代码交到LOJ上,发现只有60多分.我调了一个晚上,尝试用{2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 61, 24251, 2147483647, 998244353}这么一大串数作为基底,然后左改右改,总算过去了.特别感谢 @骗分过样例 的提醒,现在张贴的代码应该是值得信赖的了. 之前我的同学好像就指出过我的文章的很多问题.比如说我之前写到,Miller Rabin在…
定义: Miller Rabin算法是一个随机化素数测试算法,作用是判断一个数是否是素数,且只要你脸不黑以及常数不要巨大一般来讲都比\(O(\sqrt n)\)的朴素做法更快. 定理: Miller Rabin主要基于费马小定理: \[a ^ {p-1} \equiv 1 (mod p)\]其中\(p\)是质数. 于是就有闲得没事干的一群科学家们想,这个问题的逆命题是否成立呢? 逆命题:若对于任意\(a\),\(a ^ {p-1} \equiv 1 (mod p)\)都成立,那么\(p\)是质数…
判断正整数p是否是素数 方法一 朴素的判定   …
0.补充知识向量点积:结果等于0, 两向量垂直; 结果大于0, 两向量夹角小于90度; 结果小于0, 两向量夹角大于90度.直线的参数方程:(x1, y1)和(x2, y2)两点确定的直线, 其参数方程为x = x1+u(x2-x2); y = y1+u(y2-y1) 1.前言Liang-Barsky算法是 Cyrus-Beck 算法的特例, 我们先来简单的了解Cyrus-Beck算法, Cyrus-Beck算法本质是每次通过裁剪窗口(任意凸多边形, 文章最后会说明为什么凹多边形不行)的一条边界…