1.定义 对于每个节点X,它的左子树中所有的项的值小于X的值,右子树所有项的值大于X的值. 如图:任意一个节点,都满足定义,其左子树的所有值小于它,右子树的所有值大于它. 2.平均深度 在大O模型中,二叉查找树的平均深度是O(logN) . 证明:查找某个节点x的算法深度,即从根出发找到节点x的路径长.所有查找的平均深度,就是平均内部路径长. 假设二叉查找树共N个节点,假设左子树有i个节点,则右子树节点数目:N-i-1. 假设D(N)表示具有N个基点的内部路径长.则N个节点的树的内部路径长:D(…
树-二叉搜索树-AVL树 树 树的基本概念 节点的度:节点的儿子数 树的度:Max{节点的度} 节点的高度:节点到各叶节点的最大路径长度 树的高度:根节点的高度 节点的深度(层数):根节点到该节点的路径长度 树的遍历 ·前序遍历:根左右(x,Tl,Tr) ·中序遍历:左根右(Tl,x,Tr) ·后序遍历:左右根(Tl,Tr,x) 树的表示法 1.父节点数组表示法 (寻找父节点O(1),寻找儿子节点O(n)) 2.儿子链表表示法 (为克服找父节点不方便,可牺牲空间换时间:) 3.左儿子右兄弟表示法…
输入一棵树,判断这棵树是否为二叉搜索树.首先要知道什么是排序二叉树,二叉排序树是这样定义的,二叉排序树或者是一棵空树,或者是具有下列性质的二叉树: (1)若左子树不空,则左子树上所有结点的值均小于它的根结点的值: (2)若右子树不空,则右子树上所有结点的值均大于它的根结点的值: (3)左.右子树也分别为二叉排序树: (4)没有键值相等的节点 #方法1,直接判断 直接判断的关键在于不能只是单纯地判断根.左.右三个节点的大小关系,左子树的右节点不仅要大于父节点,还要小于父节点的父节点,右子树的左节点…
数据结构动图展示网站 树的概念 树(英语:tree)是一种抽象数据类型(ADT)或是实作这种抽象数据类型的数据结构,用来模拟具有树状结构性质的数据集合.它是由n(n>=1)个有限节点组成一个具有层次关系的集合.把它叫做"树"是因为它看起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的.它具有以下的特点: 每个节点有零个或多个子节点: 没有父节点的节点称为根节点: 每一个非根节点有且只有一个父节点: 除了根节点外,每个子节点可以分为多个不相交的子树: 节点的度:一个节点含有的子树的…
树:n(n>=0)个节点的有限集.有且只有一个root,子树的个数没有限制但互不相交.结点拥有的子树个数就是该结点的度(Degree).度为0的是叶结点,除根结点和叶结点,其他的是内部结点.结点的层次(Level)从根结点开始从1计数,树中结点的最大深度称为树的深度(Depth).树中结点的子树看成从左到右有次序不能互换的,称为有序树.多棵不相交的树构成森林. 树的存储结构 1. 双亲表示法(结点中存指针指向双亲,但要找某结点的孩子要遍历整棵树,所以可以加上指针指向孩子)      2. 孩子表…
AVL树的基本概念 AVL树是一种高度平衡的(height balanced)二叉搜索树:对每一个结点x,x的左子树与右子树的高度差(平衡因子)至多为1. 有人也许要问:为什么要有AVL树呢?它有什么作用呢? 我们先来看看二叉搜索树吧(因为AVL树本质上是一棵二叉搜索树),假设有这么一种极端的情况:二叉搜索树结点的插入顺序为1,2,3,4,5,也就是: 显而易见,这棵二叉搜索树已经其退化成一个链表了,也就是说,它在查找上的优势已经全无了—— 在这种情况下,查找一个结点的时间复杂度是O(n)! 如…
树 即二叉搜索树: 1.所有非叶子结点至多拥有两个儿子(Left和Right): 2.所有结点存储一个关键字: 非叶子结点的左指针指向小于其关键字的子树,右指针指向大于其关键字的子树: 如: BST树的搜索,从根结点开始,如果查询的关键字与结点的关键字相等,那么就命中: 如果BST树的所有非叶子结点的左右子树的结点数目均保持差不多(平衡),那么B树 的搜索性能逼近二分查找:但它比连续内存空间的二分查找的优点是,改变BST树结构 插入与删除结点)不需要移动大段的内存数据,甚至通常是常数开销: 如:…
二叉搜索树 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 6293    Accepted Submission(s): 2820 Problem Description 判断两序列是否为同一二叉搜索树序列   Input 开始一个数n,(1<=n<=20) 表示有n个需要判断,n= 0 的时候输入结束.接下去一行是一个序列,序列长度…
在以下讨论中,虽然任意复杂的关键字都是允许的,但为了简单起见,假设它们都是整数,并且所有的关键字是互异的. 总概   使二叉树成为二叉查找树的性质是,对于树中的每个节点X,它的左子树中所有关键字值小于X的关键字值,而它的右子树中所有的关键字值大于X的关键字值.注意,这意味着该树所有的元素可以用某种统一的方式排序. 操作 #ifndef __Tree_H struct TreeNode *Position; typedef struct TreeNode *SearchTree; SearchTr…
数据结构中常见的树(BST二叉搜索树.AVL平衡二叉树.RBT红黑树.B-树.B+树.B*树) 二叉排序树.平衡树.红黑树 红黑树----第四篇:一步一图一代码,一定要让你真正彻底明白红黑树 --- 很好…
538. 把二叉搜索树转换为累加树 给定一个二叉搜索树(Binary Search Tree),把它转换成为累加树(Greater Tree),使得每个节点的值是原来的节点值加上所有大于它的节点值之和. 例如: 输入: 原始二叉搜索树: 5 / \ 2 13 输出: 转换为累加树: 18 / \ 20 13 /** * Definition for a binary tree node. * public class TreeNode { * int val; * TreeNode left;…
题目:输入一个二叉收索树,将二叉搜索树转换成排序的双向链表.要求不能创建节点,只能将链表中的指针进行改变. 将复杂的问题简单化:思路:二叉收索树,本身是一个排序结构,中序遍历二叉收索树就可以得到一组排序数.如下图4.12所示.如何转换且看图4.13.将二叉搜索树变成三个部分,将左子树转换为二叉排序树,与根节点相连,右子树也转换为二叉排序树与根节点相连即可完成整个转换. Java代码: public class ConvertBinarySearchTree { public class Bina…
二叉搜索树(BST,Binary Search Tree),也称二叉排序树或二叉查找树. 二叉搜索树:一棵二叉树,可以为空:如果不为空,满足以下性质: 非空左子树的所有键值小于其根结点的键值: 非空右子树的所有键值大于其根结点的键值: 左右子树都是二叉搜索树: Wiki中的定义: The left subtree of a node contains only nodes with keys less than the node's key. The right subtree of a nod…
前言,以前搞过线段树,二叉树觉得也就那样= =.然后数据结构的课也没怎么听过,然后下周期中考... 本来以为今天英语考完可以好好搞ACM了,然后这个数据结构期中考感觉会丢人,还是好好学习一波. 二叉搜索树(BST,Binary Search Tree) 又称二叉排序树或二叉查找树. 二叉搜索树 是一棵二叉树,它可以为空. 特性(保证键值都不相同): ①:非空左子树的所有键值都小于根节点的键值: ②:非空右子树的所有键值都大于根节点的键值: ③:左右子树都是BST: 二叉树的遍历方式中序,后序,前…
题目描述: 输入一个整数数组,判断该数组是不是某二叉搜索树的后序遍历的结果.如果是则输出Yes,否则输出No.假设输入的数组的任意两个数字都互不相同. 输入: 每个测试案例包括2行: 第一行为1个整数n(1<=n<=10000),表示数组的长度. 第二行包含n个整数,表示这个数组,数组中的数的范围是[0,100000000]. 输出: 对应每个测试案例,如果输入数组是某二叉搜索树的后序遍历的结果输出Yes,否则输出No. 样例输入: 7 5 7 6 9 11 10 8 4 7 4 6 5 样例…
题目 A Binary Search Tree (BST) is recursively defined as a binary tree which has the following properties: The left subtree of a node contains only nodes with keys less than the node's key. The right subtree of a node contains only nodes with keys gre…
目录 简介 BST的基本性质 BST的构建 BST的搜索 BST的插入 BST的删除 简介 树是类似于链表的数据结构,和链表的线性结构不同的是,树是具有层次结构的非线性的数据结构. 树是由很多个节点组成的,每个节点可以指向很多个节点. 如果一个树中的每个节点都只有0,1,2个子节点的话,这颗树就被称为二叉树,如果我们对二叉树进行一定的排序. 比如,对于二叉树中的每个节点,如果左子树节点的元素都小于根节点,而右子树的节点的元素都大于根节点,那么这样的树被叫做二叉搜索树(Binary Search…
递归判断+建树 题目链接:https://www.patest.cn/contests/gplt/L2-004 题解 二叉搜索树的特点就是其根节点的值是位于左右子树之间的,即大于左子树的所有值,但是小于等于右子树的所有值.而先序遍历的序列,第一个值就是其根的值,我们可以利用这些性质来递归判断一棵树是否为二叉搜索树. 首先,遍历这个序列,找到第一个大于等于根节点值的节点,如果从这个节点开始之后的所有节点的值都是大于等于根节点的,那么这棵树就是二叉搜索树.而二叉搜索树的"镜像"也可以利用这…
给定一个二叉树,判断其是否是一个有效的二叉搜索树. 一个二叉搜索树具有如下特征: 节点的左子树只包含小于当前节点的数. 节点的右子树只包含大于当前节点的数. 所有左子树和右子树自身必须也是二叉搜索树. 输入: / \ 输出: true 输入: / \ / \ 输出: false 解释: 输入为: [,,,,]. 根节点的值为 ,但是其右子节点值为 . 我们只要判断每个子树中的左孩子小于根节点,右孩子大于根节点 还有一个要注意的是,空树也是二叉搜索树 func isValidBST(root *T…
题目:验证二叉搜索树 难度:Medium 题目内容: Given a binary tree, determine if it is a valid binary search tree (BST). Assume a BST is defined as follows: The left subtree of a node contains only nodes with keys less than the node's key. The right subtree of a node co…
1. 题目 2. 解答 2.1. 方法一 我们初始化根节点的范围为长整形数据的最小最大值 \([LONG\_MIN,LONG\_MAX]\),则其左子节点的取值范围为 \([LONG\_MIN,根节点值]\),右子节点的取值范围为 \([根节点值,LONG\_MAX]\). 以此类推,可以得到,如果父节点的取值范围为 \([min, max]\),则其左子节点的取值范围为 \([min,父节点值]\),右子节点的取值范围为 \([父节点值,max]\). 如果节点值在上述的范围内,则为二叉搜索树…
二叉搜索树(Binary Search Tree),又名二叉查找树.二叉排序树,是一种简单的二叉树.它的特点是每一个结点的左(右)子树各结点的元素一定小于(大于)该结点的元素.将该树用于查找时,由于二叉树的性质,查找操作的时间复杂度可以由线性降低到O(logN). 当然,这一复杂度只是描述了平均的情况,事实上,具体到每一棵二叉搜索树,查找操作的复杂度与树本身的结构有关.如果二叉树的结点全部偏向一个方向,那么与线性查找将毫无区别.这就牵扯到二叉树的平衡问题,暂时不做考虑. 下面给出二叉搜索树的实现…
定义 能够在key插入时一直保持平衡的二叉查找树: AVL树 利用AVL树实现ADT Map, 基本上与BST的实现相同,不同之处仅在于二叉树的生成与维护过程 平衡因子 AVL树的实现中, 需要对每个节点跟踪"平衡因子balance factor"参数 \(balance Factor=height (left SubTree)-height(right SubTree)\) 平衡因子大于0,称为"左重left-heavy", 小于零称为"右重right-…
接着第三课的内容和讲了第四课的部分内容 1.介绍二叉搜索树 在二叉树上,何为一个节点的后继节点? 何为搜索二叉树? 如何实现搜索二叉树的查找?插入?删除? 二叉树的概念上衍生出的. 任何一个节点,左比他小,右比他大.标准搜索二叉树是没有重复值的. TreeMap就是搜索二叉树,key是有序组织起来的,组织方式是搜索二叉树,具体就是红黑树(具有某一种平衡性的搜索二叉树),和HashMap的无序分布不同. 有序的话,能完成更多的事情,找刚刚小的.刚刚大的. 查数很方便,如果左子树和右子树高度差不超过…
概述 关于树的概念很多,B树,B+树,红黑树等等. 但是你去翻翻百度百科,或者用百度或者谷歌搜索一下中文的树结构的介绍,全都是狗屁.没有哪个中文网站是真正精确解释树的定义的,尤其是百度百科. 下面我要根据我自己的学习和理解.给出一些中文的定义. 什么是二叉树(Binary Tree) 二叉树是每个节点最多有两个子节点的树. 二叉树的叶子节点有0个字节点,二叉树的根节点或者内部节点有一个或者两个字节点. 什么是二叉搜索树(Binary Search Tree) 二叉查找树又叫二叉搜索树, 它或者是…
要求 给定n个数,对这n个数进行排序 这题当然可以直接调用sort #include<cstdio> #include<vector> #define ll long long using namespace std; ll read() { ll x=,f=;char ch=getchar(); ;ch=getchar();} +ch-';ch=getchar();} return x*f; } int n; vector<int> a; int main() { n…
第538题 给定一个二叉搜索树(Binary Search Tree),把它转换成为累加树(Greater Tree),使得每个节点的值是原来的节点值加上所有大于它的节点值之和. 例如: 输入: 二叉搜索树: 5 / \ 2 13 输出: 转换为累加树: 18 / \ 20 13 来源:力扣(LeetCode) 链接:https://leetcode-cn.com/problems/convert-bst-to-greater-tree 概念 二叉搜索树 二叉查找树(Binary Search…
一.查找二叉树(二叉搜索树BST) 1.查找二叉树的性质 1).所有非叶子结点至多拥有两个儿子(Left和Right): 2).所有结点存储一个关键字: 3).非叶子结点的左指针指向小于其关键字的子树,右指针指向大于其关键字的子树: 2.contains 方法 如果树T中含有节点X,那么返回true,如果节点不存在返回false(并且在左子树或右子树进行递归调用); 3.findMin和findMax方法 finMin是从根节点向左儿子进行,递归调用,终点就是最小的元素; findMax是从根节…
这几种树都属于数据结构中较为复杂的,在平时面试中,经常会问理解用法,但一般不会问具体的实现,所以今天来梳理一下这几种树之间的区别与联系,感谢知乎用户@Cailiang,这篇文章参考了他的专栏. 二叉查找树 是一棵空树,或是具有下列性质的二叉树: 若它的左子树不空,则左子树上所有结点的值均小于它的根结点的值: 若它的右子树不空,则右子树上所有结点的值均大于它的根结点的值:它的左.右子树也分别为二叉排序树. 插入数据: 1 如果根节点为空,则将插入的节点作为根节点 2 否则和根节点比较(我们是通过k…
完全二叉树: 空树不是完全二叉树,叶子结点只能出现在最下层和次下层,且最下层的叶子结点集中在树的左部.如果遇到一个结点,左孩子不为空,右孩子为空:或者左右孩子都为空:则该节点之后的队列中的结点都为叶子节点:该树才是完全二叉树,否则就不是完全二叉树: 具有n个节点的完全二叉树深为log2x+1(其中x表示不大于n的最大整数) 满二叉树: 除最后一层无任何子节点外,每一层上的所有结点都有两个子结点的二叉树.  二叉搜索树(二叉排序树.又称二叉查找树): 可以为空树,或者是具备如下性质:若它的左子树不…