线性代数:Ax=b的解】的更多相关文章

n列的矩阵A,当且仅当向量b是列空间C(A)的一个向量时,Ax=b有解. C(A)的零空间是N(A),N(A)正交补是A的行空间C(T(A)), 依据上一章的结论,任何Rn向量可以表示为r+n,其中n属于N(A),r属于C(T(A)). 因此,任何一个Ax=b的解可以表示为 x=r+n A(r+n) = Ar+An = Ar = b,可见r也是Ax=b的解.那么A的行空间里面是否有多个解. 假设存在r'使得Ar'=b, 那么有 A(r-r') = 0, r-r' 是N(A)的成员,由于r-r'又…
高中好友突然问我一道这样的问题,似乎是因为他们专业要做一个计算器,其中的一道习题是要求计算器实现这样的功能. 整理一下要求:解aX + e^X = b 方程.解方程精度要求0.01,给定方程只有一解,a>0,b>0,0<X<20. 当被第一次问及这样一个问题的时候,我脑海里反映的第一个方法就是「牛顿迭代法(NewtonMethod」.然而自己算法功底太差了,从来没有真正去了解过牛顿迭代法,反正早晚都是要学的,正好便借着这个机会学习了一个. 我一直认为牛顿迭代法的效率应该是几个近似求…
关于最简行阶梯矩阵和矩阵秩,可参考<线性代数笔记7——再看行列式与矩阵> 召唤一个方程Ax = b: 3个方程4个变量,方程组有无数解,现在要关注的是b1b2b3之间满足什么条件时方程组有解,它的解是什么? 在这个例子中可以马上看出,b1+b2 = b3,一般的方法是消元法化简: 化简到这一步就可以确定主元是x1和x3.通过最后一行可知,b3 – b2 - b1 = 0.b1b2b3可以是任意数,所以只要满足b3 – b2 - b1 = 0,方程组就有解.这样的组合很多,可以很容易找到一个特解…
一.增广矩阵 假设我们要求解方程$Ax=b$,其中矩阵$A$和$b$如下所示: $A = \left[\begin{array}{llll}{1} & {2} & {2} & {2} \\ {2} & {4} & {6} & {8} \\ {3} & {6} & {8} & {10}\end{array}\right]$ $b = \left[\begin{array}{llll}{b_1}\\ {b_2}\\{b_3}\end{ar…
概述 个人认为线性代数从三个角度,或者说三个工具来阐述了线性关系,分别是: 向量 矩阵 空间 这三个工具有各自的一套方法,而彼此之间又存在这密切的联系,通过这些抽象出来的工具可以用来干一些实际的活,最为直接的就是解方程组,进一步衍生出来最小二乘法等等. 这一部分主要讲了三个工具的各自的一些基本方法,以及用其解方程组的一套理论.另外,由于是总结,就不按照课程的顺序,而且各点之间都有穿插. 向量(Vector) 对于向量而言,大部分与中学一致,基本的就不说了,关注重点. 线性相关性 线性相关性用于描…
统计学与线性代数 用Numpy进行简单的描述性统计计算 import numpy as np from scipy.stats import scoreatpercentile data=np.loadtxt(,),skiprows=,uppack=True) #加载数据 print("Max method",data.max()) print("Max function",np.max(data)) print("Min method",dat…
NumPy 线性代数 NumPy 提供了线性代数函数库 linalg,该库包含了线性代数所需的所有功能,可以看看下面的说明: 函数 描述 dot 两个数组的点积,即元素对应相乘. vdot 两个向量的点积 inner 两个数组的内积 matmul 两个数组的矩阵积 determinant 数组的行列式 solve 求解线性矩阵方程 inv 计算矩阵的乘法逆矩阵 1.numpy.dot() numpy.dot() 对于两个一维的数组,计算的是这两个数组对应下标元素的乘积和(数学上称之为内积):对于…
主要内容 矩阵 特征值和特征向量 矩阵求导 矩阵 SVD的提法 奇异值分解(Singular Value Decomposition)是一种重要的矩阵分解方法,可以看做对称方阵在任意矩阵上的推广. 假设A是一个\(m\times n\)阶实矩阵,则存在一个分解使得: 通常将奇异值从大到小排列,这样\(\sum\)就能由A唯一确定了. 与特征值.特征向量的概念相对应 \(\sum\)在对角线上的元素称为矩阵A的奇异值: U的第i列称为A的关于的左奇异向量: V的第i列称为A的关于的右奇异向量. 例…
(一)线性方程组求解 包含n个未知数,由n个方程构成的线性方程组为: 其矩阵表示形式为: 其中 一.直接求解法 1.左除法 x=A\b; 如果A是奇异的,或者接近奇异的.MATLAB会发出警告信息的. 2.利用矩阵的分解来求解线性方程组(比单单进行左除速度快) (1)LU分解(只有方阵可以使用) LU分解就是分解成一个交换下三角矩阵(也就是说进行一定的操作后才是下三角矩阵)和一个上三角矩阵(不需要变换)的乘积形式.只要A是非奇异的,就可以进行LU分解. MATLAB提供的LU分解函数对于矩阵进行…
% 求Ax=0的解: r=rank(A): x=null(A,r) 求出来x的是归一化后的解.…