自己讲论文做的异构图神经网络的ppt.再转变成博客有点麻烦,所以做成图片笔记. 论文链接:https://arxiv.org/abs/1903.07293…
Person Re-identification with Deep Similarity-Guided Graph Neural Network 2018-07-27 17:41:45 Paper: https://128.84.21.199/pdf/1807.09975.pdf 本文将 Graph Neural Network (GNN) 应用到 person re-ID 的任务中,用于 model 不同 prob-gallery 之间的关系,将该信息也用于 feature learning…
小蚂蚁说: ACM CIKM 2018 全称是 The 27th ACM International Conference on Information and Knowledge Management,会议于2018年10月22日-26日在意大利都灵省举行.CIMK 是国际计算机学会(ACM)举办的信息检索.知识管理和数据库领域的重要学术会议.本次大会目的在于明确未来知识与信息系统发展将面临的挑战和问题,并通过征集和评估应用性和理论性强的高质量研究成果以确定未来的研究方向.本篇文章分享了蚂蚁金…
论文信息 论文标题:Bilinear Graph Neural Network with Neighbor Interactions论文作者:Hongmin Zhu, Fuli Feng, Xiangnan He, Xiang Wang, Yan Li, Kai Zheng, Yongdong Zhang论文来源:2019, NeurIPS论文地址:download 论文代码:download 1 Introduction GNNs 中的图卷积操作可以认为是对目标节点的邻居特征线性聚合(加权和)…
论文信息 论文标题:GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training论文作者:Jiezhong Qiu, Qibin Chen, Yuxiao Dong, Jing Zhang, Hongxia Yang, Ming Ding, Kuansan Wang, Jie Tang论文来源:2020, KDD论文地址:download论文代码:download 1 Introduction 本文的预训练任务:子图实例判…
Skeleton-Based Action Recognition with Directed Graph Neural Network 摘要 因为骨架信息可以鲁棒地适应动态环境和复杂的背景,所以经常被广泛应用在动作识别任务上,现有的方法已经证实骨架中的关键点和骨头信息对动作识别任务非常有用.然而如何将两种类型的数据最大化地利用还没有被很好地解决. 作者将骨架数据表示成一个有向非循环图(Directed acyclic graph),该图基于自然人体的节点和骨骼的动力学依赖. 这个新颖的图结构用…
作者简介: 吴天龙  香侬科技researcher 公众号(suanfarensheng) 导言 图(graph)是一个非常常用的数据结构,现实世界中很多很多任务可以描述为图问题,比如社交网络,蛋白体结构,交通路网数据,以及很火的知识图谱等,甚至规则网格结构数据(如图像,视频等)也是图数据的一种特殊形式,因此图是一个很值得研究的领域. 针对graph的研究可以分为三类: 1.经典的graph算法,如生成树算法,最短路径算法,复杂一点的二分图匹配,费用流问题等等: 2.概率图模型,将条件概率表达为…
This example shows how to use Neural Network Toolbox™ to train a deep neural network to classify images of digits. Neural networks with multiple hidden layers can be useful for solving classification problems with complex data, such as images. Each l…
Roadmap Motivation Neural Network Hypothesis Neural Network Learning Optimization and Regularization Summary…
论文<A Deep Neural Network Compression Pipeline: Pruning, Quantization, Huffman Encoding> Pruning by learning only the important connections. all connections with weights below a threshold are removed from the network. retrain the network to learn the…