转自:https://blog.csdn.net/ui_shero/article/details/78881067 1.np.linspace() 生成(start,stop)区间指定元素个数num的list,均匀分布 Parameters ---------- start : scalar  #scalar:标量 The starting value of the sequence. stop : scalar The end value of the sequence, unless `e…
content: range() np.arange() np.linspace() 一.range(start, stop, step) 1.range() 为 python 自带函数 2.生成一个从start(包含)到stop(不包含),以step为步长的序列.返回一个 list 对象 range(stop) 返回 range object range(start, stop[, step]) 返回 range object 3.start默认为0,stop是必须的,step默认为1,可正可…
目录 range np.arange np.linspace range 特点 range()是python内置函数,指定开始值,终值和步长生成等差数列的一维数组 不包含终值 步长只能是整数,生成整数类型 返回的是range对象 测试代码 a = range(1,10,1) print(a) b = range(1,10,3) print(b) c = range(1,10,0.5) print(c) 运行结果 a和b成功生成range对象 c报错 np.arange 特点 np.arange(…
1. range range是python内置的一个类,该类型表示一个不可改变(immutable)的数字序列,常常用于在for循环中迭代一组特殊的数,它的原型可以近似表示如下: class range(stop) class range(start, stop, step=1) (注意,Python是不允许定义两个类初始化函数的,其实其CPython实现更像是传入不定长参数*args,然后根据len(args)来进行不同的拆分,但我们这里遵循Python文档风格写法) 如果只传入stop参数,…
1. np.c[a, b]  将列表或者数据进行合并,我们也可以使用np.concatenate 参数说明:a和b表示输入的列表数据 2.np.linspace(0, 1, N) # 将0和1之间的数分成N份 参数说明:0表示起始数据,1表示末尾数据,N表示生成的分数 3.xx, yy = np.meshgrid(np.arange(x.min(), x.max(), N), np.arange(y.min(), y.max(), N))  对数据进行切分后,生成二维数据点 参数说明:np.ar…
import numpy as np import matplotlib.pyplot as plt def fix_seed(seed=1): #重复观看一样东西 # reproducible np.random.seed(seed) # make up data建立数据 fix_seed(1) x_data = np.linspace(-7, 10, 2500)[:, np.newaxis] #水平轴-7~10 np.random.shuffle(x_data) noise = np.ran…
import numpy as np x=np.linspace(1,10) y=np.linspace(1,10,num=10,retstep=True)#num可省略 print(x) print (y) 由结果可得,一般linspace生成含有50个数的等间隔数列,前两个参数是数列开始和结尾,第三个是数列中元素个数.retstep输出一个元组,元组的分别是生成的数列和数列的等间隔数值. print(np.linspace(150,180,80)) 等价于 print(np.linspace…
概念定义: P问题:能在多项式时间内解决的问题: NP问题:(Nondeterministic Polynomial time Problem)不能在多项式时间内解决或不确定能不能在多项式时间内解决,但能在多项式时间内验证的问题: NPC问题:(NP Complete)NP完全问题,所有NP问题在多项式时间内都能规约(Reducibility)到它的NP问题,即解决了此NPC问题,所有NP问题也都能得到解决: NP hard问题:NP难问题,所有NP问题在多项式时间内都能规约(Reducibil…
import cv2 import numpy as np import matplotlib.pyplot as plt img = 'test.jpg' img = cv2.imread(img) triangle = np.array([[0, 0], [1500, 800], [500, 400]]) abc = np.zeros((3, 2)) print(abc) abc[0,0] = 23 abc[0,1] = 300 abc[1,0] = 200 abc[1,1] = 500 a…
numpy库提供非常便捷的数组运算,方便数据的处理. 1.数组与标量之间可直接进行运算 In [45]: aOut[45]:array([[ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11]]) In [46]: a/5Out[46]:array([[ 0. , 0.2, 0.4, 0.6], [ 0.8, 1. , 1.2, 1.4], [ 1.6, 1.8, 2. , 2.2]])12345678910112.NumPy一元函数对ndarray中的数据执…