一.Hive 执行过程实例分析 1.join 对于 join 操作:SELECT pv.pageid, u.age FROM page_view pv JOIN user u ON (pv.userid = u.userid); 执行的最后结果条数: page_view 表中的 userid 数目 * user 表中的 userid 数目 实现过程:Map: (1)以 JOIN ON 条件中的列作为 Key,如果有多个列,则 Key 是这些列的组合(2)以 JOIN 之后所关心的列作为 Valu…
一.Hive 执行过程概述 1.概述 (1) Hive 将 HQL 转换成一组操作符(Operator),比如 GroupByOperator, JoinOperator 等 (2)操作符 Operator 是 Hive 的最小处理单元 (3)每个操作符代表一个 HDFS 操作或者 MapReduce 作业 (4)Hive 通过 ExecMapper 和 ExecReducer 执行 MapReduce 程序,执行模式有本地模式和分 布式两种模式 2.Hive 操作符列表 3.Hive 编译器的…
一.Hive的命令行 1.Hive支持的一些命令 Command Description quit Use quit or exit to leave the interactive shell. set key=value Use this to set value of particular configuration variable. One thing to note here is that if you misspell the variable name, cli will no…
一.Hive 执行过程概述 1.概述 (1) Hive 将 HQL 转换成一组操作符(Operator),比如 GroupByOperator, JoinOperator 等 (2)操作符 Operator 是 Hive 的最小处理单元 (3)每个操作符代表一个 HDFS 操作或者 MapReduce 作业 (4)Hive 通过 ExecMapper 和 ExecReducer 执行 MapReduce 程序,执行模式有本地模式和分 布式两种模式 2.Hive 操作符列表 3.Hive 编译器的…
1.MapReduce是如何执行任务的?2.Mapper任务是怎样的一个过程?3.Reduce是如何执行任务的?4.键值对是如何编号的?5.实例,如何计算没见最高气温? 分析MapReduce执行过程        MapReduce运行的时候,会通过Mapper运行的任务读取HDFS中的数据文件,然后调用自己的方法,处理数据,最后输出.Reducer任务会接收Mapper任务输出的数据,作为自己的输入数据,调用自己的方法,最后输出到HDFS的文件中.整个流程如图: Mapper任务的执行过程详…
案例说明 现有如此三份数据:1.users.dat 数据格式为: 2::M::56::16::70072, 共有6040条数据对应字段为:UserID BigInt, Gender String, Age Int, Occupation String, Zipcode String对应字段中文解释:用户id,性别,年龄,职业,邮政编码 2.movies.dat 数据格式为: 2::Jumanji (1995)::Adventure|Children's|Fantasy, 共有3883条数据对应字…
概述 本文中介绍前几个序列函数,NTILE,ROW_NUMBER,RANK,DENSE_RANK,下面会一一解释各自的用途. 注意: 序列函数不支持WINDOW子句.(ROWS BETWEEN) 数据准备 数据格式 cookie1,, cookie1,, cookie1,, cookie1,, cookie1,, cookie1,, cookie1,, cookie2,, cookie2,, cookie2,, cookie2,, cookie2,, cookie2,, cookie2,, 创建…
一.负责数据类型 1.array 现有数据如下: 1 huangbo guangzhou,xianggang,shenzhen a1:30,a2:20,a3:100 beijing,112233,13522334455,500 2 xuzheng xianggang b2:50,b3:40 tianjin,223344,13644556677,600 3 wangbaoqiang beijing,zhejinag c1:200 chongqinjg,334455,15622334455,20 建…
1.什么是数据倾斜? 由于数据分布不均匀,造成数据大量的集中到一点,造成数据热点 2.Hadoop 框架的特性 A.不怕数据大,怕数据倾斜 B.Jobs 数比较多的作业运行效率相对比较低,如子查询比较多 C. sum,count,max,min 等聚集函数,通常不会有数据倾斜问题 3.主要表现 任务进度长时间维持在 99%或者 100%的附近,查看任务监控页面,发现只有少量 reduce 子任务未完成,因为其处理的数据量和其他的 reduce 差异过大. 单一 reduce 处理的记录数和平均记…
数据准备 数据格式 cookie4.txt cookie1, ::,url2 cookie1, ::,url1 cookie1, ::,1url3 cookie1, ::,url6 cookie1, ::,url7 cookie1, ::,url4 cookie1, ::,url5 cookie2, ::,url22 cookie2, ::,url11 cookie2, ::,1url33 cookie2, ::,url66 cookie2, ::,url77 cookie2, ::,url44…