Monocular Vision】的更多相关文章

Monocular Vision: a condition in which one eye is blind, seeing with only one eye Binocular Vision: seeing with two eyes simultaneously Depth Perception: ability to detect how far away an object is from other objects…
持续更新ing~ all *.files come from the author:http://www.cnblogs.com/findumars/p/5009003.html 1 牛人Homepages(随意排序,不分先后): 1.USC Computer Vision Group:南加大,多目标跟踪/检测等: 2.ETHZ Computer Vision Laboratory:苏黎世联邦理工学院,欧洲最好的几个CV/ML研究机构: 3.Helmut Grabner:Online Boost…
[1]陈卫东, 张飞. 移动机器人的同步自定位与地图创建研究进展[J]. 控制理论与应用, 2005, 22(3):455-460. [2]Cadena C, Carlone L, Carrillo H, et al. Past, Present, and Future of Simultaneous Localization and Mapping: Toward the Robust-Perception Age[J]. IEEE Transactions on Robotics, 2016…
相比典型的点云地图,语义地图能够很好的表示出机器人到的地方是什么,机器人“看”到的东西是什么.比如进入到一个房间,点云地图中,机器人并不能识别显示出来的一块块的点云到底是什么,但是语义地图的构建可以分辨出厨房中的锅碗瓢盆,客厅的桌子沙发电视机等.所以语义地图的构建,对于SLAM研究有着很重大的意义.本文和大家一起切磋小叙一下语义SLAM 的未来. 1 何为语义地图 一直以来,构建语义地图都是一个大家都一致认同的发展方向,主要原因有以下两点: ❶ 目前视觉SLAM方案中所采用的图像特征的语义级别太…
ICCV 2013 (http://www.iccv2013.org/tutorials.php) Don't Relax: Why Non-Convex Algorithms are Often Needed for Sparse EstimationDavid Wipf (MS Research)http://research.microsoft.com/en-us/people/davidwip/wipf_iccv_slides_final.pdf Part-based Models fo…
首语: 此文实现客观的评测了使线性化的反转深度的效果.整篇只在表明反转可以线性化,解决距离增加带来的增长问题,有多少优势--%! 我的天呢!我竟然完整得翻译了一遍. 使用标记点地图构建SLAM的方法,有一种EKFmonocularSLAM的存在,可以不使用BA直接完成稀疏场景地图重建,详细方法和代码见官网:http://www.openslam.org/ EKF-SLAM使用EKF方法,所使用的方法参考两篇论文: Long Description        This code contain…
Direct Monocular Odometry Using Points and Lines Abstract 大多数VO都用点: 特征匹配 / 基于像素intensity的直接法关联. 我们做了一种直接法算法结合了点和edge. 它在纹理少的场景下工作的更好,而且对于光线的变化和快速的运动的情况下通过扩大收敛域(convergence basin - 盆)的方式提升鲁棒性. 我们对于关键帧保持了depth map. Tracking: 相机位姿是通过最小化广度误差和几何误差(匹配的edge…
积累记录一些视觉实验室,方便查找 1.  多伦多大学计算机科学系 2.  普林斯顿大学计算机视觉和机器人实验室 3.  牛津大学Torr Vision Group 4.  伯克利视觉和学习中心 Prof. Trevor Darrell CS280 Computer Vision Object Detection and Segmentation for RGB-D Images 5. Carnegie Mellon University(CMU) Compoter Vision Group Kr…
In the 1960s, the legendary Stanford artificial intelligence pioneer, John McCarthy, famously gave a graduate student the job of “solving” computer vision as a summer project. It has occupied an entire community of academic researchers for the past 4…
As I walked through the large poster-filled hall at CVPR 2013, I asked myself, “Quo vadis Computer Vision?" (Where are you going, computer vision?)  I see lots of papers which exploit last year’s ideas, copious amounts of incremental research, and an…