NLP论文泛读之<教材在线评论的情感倾向性分析> 本文借助细粒度情感分类技术, 对从网络上抓取大量计算机专业本科教材的评价文本进行情感极性 分析, 从而辅助商家和出版社改进教材的质量.制定 合理的销售策略, 并为潜在消费者的购买决策 供参 考依据. 主要解决了什么问题? 分析.提取对计算机类教材有效的.可靠的评价(当当.京东平台) 1.部分评论有省略号 2.有些评论很简略,没有出现'书'这个主体对象 主要用到什么方法或技术 流程: Sep1.去噪 1.1 同一用户针对同一产品发表的多条相同评论…
这篇论文非常适合工业界的人(比如我)去读,有很多的借鉴意义. 强烈建议自己去读. title:五年微软经验的点击欺诈检测 摘要:1.微软很厉害.2.本文描述了大规模数据挖掘所面临的独特挑战.解决这一问题的技术的设计选择和原理,并举例说明了该系统在打击点击欺诈方面的有效性和一些定量结果. 1.What is Click Fraud? 什么是点击欺诈 Click fraud is the term used to describe artificial clicks generated on adv…
原文翻译 导读 这篇文章的主要工作在于应用了对抗训练(adversarial training)的思路来解决开放式对话生成(open-domain dialogue generation)这样一个无监督的问题. 其主体思想就是将整体任务划分到两个子系统上,一个是生成器(generative model),利用seq2seq式的模型以上文的句子作为输入,输出对应的对话语句:另一个则是一个判别器(discriminator),用以区分在前文条件下当前的问答是否是和人类行为接近,这里可以近似地看作是一…
title:新的基于集成学习的移动广告作弊检测 导语:基于buzzcity数据集,我们提出了对点击欺诈检测是基于一组来自现有属性的新功能的一种新方法.根据所得到的精度.召回率和AUC对所提出的模型进行评估.最后的模型基于6种不同的学习算法.我们用刚才说的三种指标,来证明模型是稳定的.我们的最终模型在训练.验证和测试数据集上显示了改进的结果,从而证明了它对不同数据集的普遍性. 1.Introduction 导入 大部分都是废话 1.1 Problem Formulation 问题构建 数据是用的b…
Java 垃圾回收(GC) 泛读 文章地址:https://segmentfault.com/a/1190000008922319 0. 序言 带着问题去看待 垃圾回收(GC) 会比较好,一般来说主要的疑惑在于这么几点: 为什么需要 GC ? 虚拟机(JVM) 与 垃圾回收(GC) 的关系? GC 的原理有哪些? 哪些 对象容易被 GC ? 等等 带着这些问题往下看: 1. 为什么需要 GC ? GC: 是Garbage Collection 的英文缩略,垃圾收集的意思. 为什么需要 GC? 主…
情感分析简介   文本情感分析(Sentiment Analysis)是自然语言处理(NLP)方法中常见的应用,也是一个有趣的基本任务,尤其是以提炼文本情绪内容为目的的分类.它是对带有情感色彩的主观性文本进行分析.处理.归纳和推理的过程.   本文将介绍情感分析中的情感极性(倾向)分析.所谓情感极性分析,指的是对文本进行褒义.贬义.中性的判断.在大多应用场景下,只分为两类.例如对于"喜爱"和"厌恶"这两个词,就属于不同的情感倾向.   本文将详细介绍如何使用深度学习…
StreamDM:基于Spark Streaming.支持在线学习的流式分析算法引擎 streamDM:Data Mining for Spark Streaming,华为诺亚方舟实验室开源了业界第一个基于 Spark Streaming 的算法引擎StreamDM. 大数据分析按照模型是否在线学习可以分为: 离线学习(Offline Learning): 在线学习(Online Learning)两大方式, 对应的数据处理模式分别为: 批处理(Batch Mode)分析: 流处理(Stream…
一.AQS介绍 AQS(AbstractQueuedSynchronizer)抽象队列同步器,属于多线程编程的基本工具:JDK对其定义得很详细,并提供了多种常用的工具类(重入锁,读写锁,信号量,CyclicBarrier,CountDownLatch),在阅读源码的时候,我是从具体工具类往上读的,这样会比较便于理解AQS的设计. 下面,我将从五种常用类去分析源码,进而学习AQS. 论文地址 二.开始吧,重入锁(ReetrantLock) 我们要阅读的重入锁,它首先遵循Lock的规范,并且实现了序…
本篇随笔为转载,原贴地址,知乎:GAN for NLP(论文笔记及解读).…
虽然ICCV2019已经公布了接收ID名单,但是具体的论文都还没放出来,为了让大家更快得看论文,我们汇总了目前已经公布的大部分ICCV2019 论文,并组织了ICCV2019论文汇总开源项目(https://github.com/extreme-assistant/iccv2019),目前已经收集到70篇论文,其中10篇Oral,13篇开源,见下方list.建议Oral的文章一定要去读一读. 本文中所有论文PDF已经打包上传到百度云,可以直接在GitHub项目上看到或者直接微信后台回复"ICCV…