Apache Flink是一个分布式流式和批量数据处理的开源平台. Flink的核心是一个流式数据流动引擎,它为数据流上面的分布式计算提供数据分发.通讯.容错.Flink包括几个使用 Flink引擎创建应用程序的编程接口: 1. DataStream API  集成在Java和Scala中中的流数据格式: 2.DataSet API 集成在JAVA.Scala.Python中的静态数据: 3. Table API 在JAVA.Scala中使用的类SQL的表达式: Flink 也包含为特定用户场景…
摘要 Faust是用python开发的一个分布式流式处理框架.在一个机器学习应用中,机器学习算法可能被用于数据流实时处理的各个环节,而不是仅仅在推理阶段,算法也不仅仅局限于常见的分类回归算法,而是会根据业务需要执行一个十分差异化的任务, 例如:在我们的时序异常检测应用中, 前处理阶段的变点检测算法.这就要求流处理框架除了具备进行常规的转换聚合操作之外,可以支持更加强大的任意自定义逻辑和更加复杂的自定义状态,能够更好地与原生的python算法代码紧密结合在一起.在主流的flink, spark s…
本文是作者在充分阅读和理解Yahoo!最新发布的技术论文<S4:Distributed Stream Computing Platform>的基础上,所做出的知识分享. S4是Yahoo!在2010年10月开源的一套通用.分布式.可扩展.部分容错.具备可插拔功能的平台.这套平台主要是为了方便开发者开发处理流式数据(continuous unbounded streams of data)的应用.项目官方网站为:http://s4.io/.同时,S4的开发者也发表了一篇技术论文<S4:Di…
简介: Storm是一个免费开源.分布式.高容错的实时计算系统.它与其他大数据解决方案的不同之处在于它的处理方式.Hadoop 在本质上是一个批处理系统,数据被引入 Hadoop 文件系统 (HDFS) 并分发到各个节点进行处理.当处理完成时,结果数据返回到 HDFS 供始发者使用.Hadoop的高吞吐,海量数据处理的能力使得人们可以方便地处理海量数据.但是,Hadoop的缺点也和它的优点同样鲜明——延迟大,响应缓慢,运维复杂.Storm就是为了弥补Hadoop的实时性为目标而被创造出来.Sto…
Storm是一个分布式的.高容错的实时计算系统.Storm适用的场景: Storm可以用来用来处理源源不断的消息,并将处理之后的结果保存到持久化介质中. 由于Storm的处理组件都是分布式的,而且处理延迟都极低,所以可以Storm可以做为一个通用的分布式RPC框架来使用.(实时计算?) Storm集群架构 Storm集群采用主从架构方式,主节点是Nimbus,从节点是Supervisor,有关调度相关的信息存储到ZooKeeper集群中,架构如下图所示 Nimbus:Storm集群的Master…
前面介绍了批量处理的WorkCount是如何执行的 <从flink-example分析flink组件(1)WordCount batch实战及源码分析> <从flink-example分析flink组件(2)WordCount batch实战及源码分析----flink如何在本地执行的?> 这篇从WordCount的流式处理开始 /** * Implements the "WordCount" program that computes a simple wor…
相当长一段时间以来,大数据社区已经普遍认识到了批量数据处理的不足.很多应用都对实时查询和流式处理产生了迫切需求.最近几年,在这个理念的推动下,催生出了一系列解决方案,Twitter Storm,Yahoo S4,Cloudera Impala,Apache Spark和Apache Tez纷纷加入大数据和NoSQL阵营.本文尝试探讨流式处理系统用到的技术,分析它们与大规模批量处理和OLTP/OLAP数据库的关系,并探索一个统一的查询引擎如何才能同时支持流式.批量和OLAP处理. 在Grid Dy…
前面说了Java8的流,这里还说流处理,既然是流,比如水流车流,肯定得有流的源头,源可以有多种,可以自建,也可以从应用端获取,今天就拿非常经典的Kafka做源头来说事,比如要来一套应用日志实时分析框架,或者是高并发实时流处理框架,正是Kafka的拿手好戏. 环境:Idea2019.03/Gradle6.0.1/JDK11.0.4/Lambda/RHEL8.0/VMWare15.5/Springboot2.2.1.RELEASE/Zookeeper3.5.5/Kafka2.3.1 难度:新手--战…
kafka概述 kafka是一个分布式的基于发布/订阅模式的消息队列(message queue),一般更愿意称kafka是一款开源的消息引擎系统,只不过消息队列会耳熟一些.kafka主要应用于大数据实时领域. 为什么会有消息队列,主要是为了异步处理,提高效率.我们来看一张图 使用消息队列,可以把耗时任务扔到队列里面,异步调用,从而提升效率.也就是我们所说的解耦. 然而除了解耦,还有没有其他作用呢?答案显然是有的,用一个专业点的名词解释的话,就是削峰填谷. 削峰填谷,真的是非常形象的四个字.所谓…
提到Kafka很多人的第一印象就是它是一个消息系统,但Kafka发展至今,它的定位已远不止于此,而是一个分布式流处理平台.对于一个流处理平台通常具有三个关键能力: 1. 发布和订阅消息流,在这一点上它与消息队列或企业消息系统类似 2. 以容错的持久化方式存储消息流 3. 在消息流产生时处理它们 目前,Kafka通常应用于两大类应用: 1. 构建实时的流数据管道,可靠地在系统和应用程序之间获取数据 2. 构建实时流的应用程序,对数据流进行转换或响应 下面我们来一起看一下,Kafka是如何实现以上所…