1 引言 Pandas是作为Python数据分析著名的工具包,提供了多种数据选取的方法,方便实用.本文主要介绍Pandas的几种数据选取的方法. Pandas中,数据主要保存为Dataframe和Series是数据结构,这两种数据结构数据选取的方式基本一致,本文主要以Dataframe为例进行介绍. 在Dataframe中选取数据大抵包括3中情况: 1)行(列)选取(单维度选取):df[].这种情况一次只能选取行或者列,即一次选取中,只能为行或者列设置筛选条件(只能为一个维度设置筛选条件). 2…
导入CSV文件数据 环境 C:\Users\Thinkpad\Desktop\Data\信息表.csv 语法 pd.read_csv(filename):从CSV文件导入数据 实现代码 import pandas as pd f = open("C:/Users/Thinkpad/Desktop/Data/信息表.csv",encoding="utf-8") content = pd.read_csv(f) print(content) 运行结果 导入Excle文件…
loc: only work on indexiloc: work on positionix: You can get data from dataframe without it being in the indexat: get scalar values. It's a very fast lociat: Get scalar values. It's a very fast iloc…
1引言 本文总结Pandas中两种常用的数据类型: (1)Series是一种一维的带标签数组对象. (2)DataFrame,二维,Series容器 2 Series数组 2.1 Series数组构成 Series数组对象由两部分构成: 值(value):一维数组的各元素值,是一个ndarray类型数据. 索引(index):与一维数组值一一对应的标签.利用索引,我们可非常方便得在Series数组中进行取值. 如下所示,我们通过字典创建了一个Series数组,输出结果的第一列就是索引,第二列就是…
Python数据分析库pandas基本操作2017年02月20日 17:09:06 birdlove1987 阅读数:22631 标签: python 数据分析 pandas 更多 个人分类: Python第三方库 所属专栏: python第三方库 pandas是什么? 是它吗?....很显然pandas没有这个家伙那么可爱....我们来看看pandas的官网是怎么来定义自己的:pandas is an open source, easy-to-use data structures and d…
Python 数据分析:Pandas 缺省值的判断 背景 我们从数据库中取出数据存入 Pandas None 转换成 NaN 或 NaT.但是,我们将 Pandas 数据写入数据库时又需要转换成 None,不然就会报错.因此,我们就需要处理 Pandas 的缺省值. 样本数据 id name password sn sex age amount content remark login_date login_at created_at 0 1 123456789.0 NaN NaN NaN 20…
loc:通过行标签索引数据 iloc:通过行号索引行数据 ix:通过行标签或行号索引数据(基于loc和iloc的混合) 使用loc.iloc.ix索引第一行数据: loc: iloc: ix:…
1 引言 数据分析.数据挖掘.可视化是Python的众多强项之一,但无论是这几项中的哪一项都必须以数据作为基础,数据通常都存储在外部文件中,例如txt.csv.excel.数据库.本篇中,我们来捋一捋Python中那些外部数据文件读取.写入的常用方法. 下表是Pandas官方手册上给出的一张表格,表格描述的是Pandas中对各种数据文件类型的读.写函数,你可以直接在官方手册中找到: Format Type Data Description Reader Writer text CSV read_…
先手工生出一个数据框吧 import numpy as np import pandas as pd df = pd.DataFrame(np.arange(0,60,2).reshape(10,3),columns=list('abc')) df 是这样子滴 那么这三种选取数据的方式该怎么选择呢? 一.当每列已有column name时,用 df [ 'a' ] 就能选取出一整列数据.如果你知道column names 和index,且两者都很好输入,可以选择 .loc df.loc[0, '…
Python中的pandas模块进行数据分析. 接下来pandas介绍中将学习到如下8块内容:1.数据结构简介:DataFrame和Series2.数据索引index3.利用pandas查询数据4.利用pandas的DataFrames进行统计分析5.利用pandas实现SQL操作6.利用pandas进行缺失值的处理7.利用pandas实现Excel的数据透视表功能8.多层索引的使用 一.数据结构介绍 在pandas中有两类非常重要的数据结构,即序列Series和数据框DataFrame.Ser…
Python中的pandas模块进行数据分析. 接下来pandas介绍中将学习到如下8块内容:1.数据结构简介:DataFrame和Series2.数据索引index3.利用pandas查询数据4.利用pandas的DataFrames进行统计分析5.利用pandas实现SQL操作6.利用pandas进行缺失值的处理7.利用pandas实现Excel的数据透视表功能8.多层索引的使用 一.数据结构介绍 在pandas中有两类非常重要的数据结构,即序列Series和数据框DataFrame.Ser…
从头到尾都是手码的,文中的所有示例也都是在Pycharm中运行过的,自己整理笔记的最大好处在于可以按照自己的思路来构建矿建,等到将来在需要的时候能够以最快的速度看懂并应用=_= 注:为方便表述,本章设s为pandas.core.series.Series的一个实例化对象,设df为pandas.core.frame.DataFrame的一个实例化对象 1. Pandas简介 Pandas是基于NumPy的python数据分析库,最初被作为金融数据分析工具而开发出来,因此Pandas为时间序列分析提…
首先要给那些不熟悉 Pandas 的人简单介绍一下,Pandas 是 Python 生态系统中最流行的数据分析库.它能够完成许多任务,包括: 读/写不同格式的数据 选择数据的子集 跨行/列计算 寻找并填写缺失的数据 在数据的独立组中应用操作 重塑数据成不同格式 合并多个数据集 先进的时序功能 通过 matplotlib 和 seaborn 进行可视化操作 尽管 Pandas 功能强大,但它并不为整个数据科学流程提供完整功能.Pandas 通常是被用在数据采集和存储以及数据建模和预测中间的工具,作…
1.1 数据结构介绍 参考博客:http://www.cnblogs.com/nxld/p/6058591.html 1.pandas介绍 1. 在pandas中有两类非常重要的数据结构,即序列Series和数据框DataFrame. 2. Series类似于numpy中的一维数组,除了通吃一维数组可用的函数或方法,而且其可通过索引标签的方式获取数据,还具有索引的自动对齐功能: 3. DataFrame类似于numpy中的二维数组,同样可以通用numpy数组的函数和方法,而且还具有其他灵活应用,…
参考pandas官方文档: http://pandas.pydata.org/pandas-docs/stable/10min.html#min 1.pandas中的数据类型 Series 带有索引标记的一维数组,可以存储任何数据类型 #基本方法 >>s =pd.Series(data, index=index) >>import pandas as pd >>import numpy as np # 使用ndarray创建 >>indexs = ['a',…
在我看来,对于Numpy以及Matplotlib,Pandas可以帮助创建一个非常牢固的用于数据挖掘与分析的基础.而Scipy(会在接下来的帖子中提及)当然是另一个主要的也十分出色的科学计算库,但是我认为前三者才是真正的Python科学计算的支柱. 所以,不需要太多精力,让我们马上开始Python科学计算系列的第三帖——Pandas.如果你还没有查看其他帖子,不要忘了去看一下哦! 导入Pandas 我们首先要导入我们的演出明星——Pandas. 这是导入Pandas的标准方式.显然,我们不希望每…
打算从后往前来做笔记 第九章 数据聚合与分组运算 分组 #生成数据,五行四列 df = pd.DataFrame({'key1':['a','a','b','b','a'], 'key2':['one','two','one','two','one'], 'data1':np.random.randn(5), 'data2':np.random.randn(5)}) df #可以按照key1分组计算data1的平均值 df.loc[:,'data1'].groupby(df.loc[:,'key…
loc与iloc功能介绍:数据切片.通过索引来提取数据集中相应的行数据or列数据(可以是多行or多列) 总结: 不同:1. loc函数通过调用index名称的具体值来取数据2. iloc函数通过行序号来取数据3. 取多行数据时iloc不包含末尾4. 对数据进行筛选使用loc函数,当使用loc函数时,如果index不具有特定意义,而且重复,那么提取的数据需要进一步处理,可用.reset_index()函数重置index相同:1. []中无逗号时,默认取行 举例说明: #构建数据集 df1=pd.D…
pandas 是数据分析时必须用到的一个库,功能非常强大 其有两种数据结构:一维Series   二维表DataFrame(一般读取后的数据都是df) 导入:import pandas as pd 数据读取:pd.read_csv('d:/a.csv',dtype=objec,encoding='utf-8') pd.read_csv('d:/a.txt',dtype=objec,encoding='utf-8') pd.read_excel('d:/a.xls',dtype=objec,enc…
pandas是python下强大的数据分析和探索工具,是的python在处理数据时非常快速.简单.它是构建在numpy之上的,包含丰富的数据处理函数,支持时间序列分析功能,支持灵活处理缺失数据. pandas基础 # 安装 pip install pandas pandas 基本的数据结构是 Series 和 DataFrame .Series 就是序列,类似一维数组:DataFrame 则是相当于一张二维的表格,类似二维数组,它的每一列都是一个 Series .每个 Series 都会带有一个…
目录 1 pandas简介 2 导入 3 使用 4 读取.写入 1 pandas简介 1.Pandas是什么? Pandas是一个强大的分析结构化数据的工具集: 它的使用基础是Numpy(提供高性能的矩阵运算): 用于数据挖掘和数据分析,同时也提供数据清洗功能. 2.DataFrame DataFrame是Pandas中的一个表格型的数据结构,包含有一组有序的列,每列可以是不同的值类型(数值.字符串.布尔型等),DataFrame即有行索引也有列索引,可以被看做是由Series组成的字典. pa…
数据的检索.加工与存储 1.利用Numpy和pandas对CSV文件进行写操作 对CSV文件进行写操作,numpy的savetxt()函数是与loadtxt()相对应的一个函数,他能以诸如CSV之类的区隔型文件格式保存数组: np.savetxt('np.csv',a,fmt='%.2f',delimiter=',',header="#1,#2,#3,#4") 上面的函数调用中,我们规定了用以保存数组的文件的名称.数组.可选格式.间隔符(默认为空格符)和一个可选的标题. 利用随机数组来…
在数据库中,我们可以对数据进行分类,聚合运算.例如groupby操作.在pandas中同样也有类似的功能.通过这些聚合,分组操作,我们可以很容易的对数据进行转换,清洗,运算.比如如下图,首先通过不同的键值进行分类,然后对各个分类进行求和运算. 我们来看实际的例子,首先生成一组数据如下 df=DataFrame({'key1':['a','a','b','b','a'],'key2':['one','two','one','two','one'],'data1':np.random.randn(5…
1 对Excel文件的操作 方法一: 使用xlrd库或者xlwt库进行对excel表格的操作读与写: 方法二: pandas库同样支持excel的读写操作:且更加简便. 2 pd.read_excel( )的参数 读Excel文件 df=pd.read_excel(io, sheet_name=0, # 工作表名称 header=0, # 指定作为列名的行 names=None, # 指定列的名字,传入一个list数据 index_col=None, # 指定列为索引列 usecols=None…
本节介绍Series和DataFrame中的数据的基本手段 重新索引 pandas对象的一个重要方法就是reindex,作用是创建一个适应新索引的新对象 ''' Created on 2016-8-10 @author: xuzhengzhu ''' ''' Created on 2016-8-10 @author: xuzhengzhu ''' from pandas import * print "--------------obj result:-----------------"…
一.pandas库简介 pandas是一个专门用于数据分析的开源Python库,目前很多使用Python分析数据的专业人员都将pandas作为基础工具来使用.pandas是以Numpy作为基础来设计开发的,Numpy是大量Python数据科学计算库的基础,pandas以此为基础,在计算方面具有很高的性能.pandas有两大数据结构,这是pandas的核心,数据分析的所有任务都离开它们,分别是Series和DataFrame.   二.pandas库的安装 paandas安装较为简单,如果使用An…
上一节,我们已经安装了numpy,基于numpy,我们继续来看下pandas pandas用于做数据分析与数据挖掘 pandas安装 使用命令 pip install pandas 出现上图表示安装成功. pandas又两大数据结构,数据分析相关的都围绕着这两种结构进行: ①Series ②DataFrame Series用于存储序列这样的一维数据,DataFrame用于存储多维数据 Series对象 主要有2个相关联的数组组合在一起:①主元素数组 ②Index数组 index value 0…
数据可视化 matplotlib绘图入门 为了使用matplotlib来绘制基本图像,需要调用matplotlib.pyplot子库中的plot()函数 import matplotlib.pyplot as plt import numpy as np x=np.linspace(,) plt.plot(x,.+x) plt.plot(x,+*x,'--') plt.show() 对数图 所谓对数图,实际上就是使用对数坐标绘制的图形.对于对数刻度来说,其间隔表示的是变量的值在数量级上的变化,这…
一.pandas数据结构介绍 在pandas中有两类非常重要的数据结构,即序列Series和数据框DataFrame.Series类似于numpy中的一维数组,除了通吃一维数组可用的函数或方法,而且其可通过索引标签的方式获取数据,还具有索引的自动对齐功能:DataFrame类似于numpy中的二维数组,同样可以通用numpy数组的函数和方法,而且还具有其他灵活应用,后续会介绍到. 二.pandas数据结构之Series #使用模块之前先导入import pandas as pd from pan…
pandas对象拥有一组常用的数学和统计方法,大部分都属于约简和汇总统计,用于从Series中提取单个的值,或者从DataFrame中的行或列中提取一个Series.相比Numpy而言,Numpy都是基于没有缺失数据的假设而构建的. 来看一个简单的例子 In [6]: df=DataFrame([[1.4,np.nan],[7,-4],[np.nan,np.nan],[0.75,-1.3]],index=['a ...: ','b','c','d'],columns=['one','two'])…