pytorch实现autoencoder】的更多相关文章

关于autoencoder的内容简介可以参考这一篇博客,可以说写的是十分详细了https://sherlockliao.github.io/2017/06/24/vae/ 盗图一张,自动编码器讲述的是对于一副输入的图像,或者是其他的信号,经过一系列操作,比如卷积,或者linear变换,变换得到一个向量,这个向量就叫做对这个图像的编码,这个过程就叫做encoder,对于一个特定的编码,经过一系列反卷积或者是线性变换,得到一副图像,这个过程叫做decoder,即解码. 然而自动编码器有什么用,看到上…
Pytorch中的自编码(autoencoder) 本文资料来源:https://www.bilibili.com/video/av15997678/?p=25 什么是自编码 先压缩原数据.提取出最有代表性的信息.然后处理后再进行解压.减少处理压力 通过对比白色X和黑色X的区别(cost函数),从而不断提升自编码模型的能力(也就是还原的准确度) 由于这里只是使用了数据本身,没有使用label,所以可以说autoencoder是一种无监督学习模型. 实际在使用中,我们先训练好一个autoencod…
import os import torch import torch.nn as nn import torch.nn.functional as F import torchvision from torchvision import transforms from torchvision.utils import save_image # 配置GPU或CPU设置 device = torch.device('cuda' if torch.cuda.is_available() else '…
torch.nn Parameters class torch.nn.Parameter() 艾伯特(http://www.aibbt.com/)国内第一家人工智能门户,微信公众号:aibbtcom Variable的一种,常被用于模块参数(module parameter). Parameters 是 Variable 的子类.Paramenters和Modules一起使用的时候会有一些特殊的属性,即:当Paramenters赋值给Module的属性的时候,他会自动的被加到 Module的 参…
以下是对pytorch 1.0版本 的seq2seq+注意力模型做法语--英语翻译的理解(这个代码在pytorch0.4上也可以正常跑): # -*- coding: utf-8 -*- """ Translation with a Sequence to Sequence Network and Attention ************************************************************* **Author**: `Sean…
关于自编码器的原理见另一篇博客 : 编码器AE & VAE 这里谈谈对于变分自编码器(Variational auto-encoder)即VAE的实现. 1. 稀疏编码 首先介绍一下“稀疏编码”这一概念. 早期学者在黑白风景照片中可以提取到许多16*16像素的图像碎片.而这些图像碎片几乎都可由64种正交的边组合得到.而且组合出一张碎片所需的边的数目很少,即稀疏的.同时在音频中大多数声音也可由几种基本结构组合得到.这其实就是特征的稀疏表达.即使用少量的基本特征来组合更加高层抽象的特征.在神经网络中…
Awesome-Pytorch-list 2018-08-10 09:25:16 This blog is copied from: https://github.com/Epsilon-Lee/Awesome-pytorch-list Pytorch & related libraries pytorch : Tensors and Dynamic neural networks in Python with strong GPU acceleration. pytorch extras :…
转自:https://github.com/ritchieng/the-incredible-pytorch The Incredible PyTorch What is this? This is inspired by the famous Awesome TensorFlow repository where this repository would hold tutorials, projects, libraries, videos, papers, books and anythi…
项目地址:https://github.com/bharathgs/Awesome-pytorch-list 列表结构: NLP 与语音处理 计算机视觉 概率/生成库 其他库 教程与示例 论文实现 PyTorch 其他项目 自然语言处理和语音处理 该部分项目涉及语音识别.多说话人语音处理.机器翻译.共指消解.情感分类.词嵌入/表征.语音生成.文本语音转换.视觉问答等任务,其中有一些是具体论文的 PyTorch 复现,此外还包括一些任务更广泛的库.工具集.框架. 这些项目有很多是官方的实现,其中…
花式解释AutoEncoder与VAE 什么是自动编码器 自动编码器(AutoEncoder)最开始作为一种数据的压缩方法,其特点有: 1)跟数据相关程度很高,这意味着自动编码器只能压缩与训练数据相似的数据,这个其实比较显然,因为使用神经网络提取的特征一般是高度相关于原始的训练集,使用人脸训练出来的自动编码器在压缩自然界动物的图片是表现就会比较差,因为它只学习到了人脸的特征,而没有能够学习到自然界图片的特征: 2)压缩后数据是有损的,这是因为在降维的过程中不可避免的要丢失掉信息: 到了2012年…