数论---lcm和gcd】的更多相关文章

cd即最大公约数,lcm即最小公倍数. 首先给出a×b=gcd×lcm 证明:令gcd(a,b)=k,a=xk,b=yk,则a×b=xykk,而lcm=xyk,所以ab=gcd*lcm. 所以求lcm可以先求gcd,而求gcd的方法就是辗转相除法,也叫做欧几里德算法,核心为gcd(m,n)=gcd(n,m%n) 递归实现: ''' LL gcd(LL a, LL b){ return b ? gcd(b, a%b) : a; } ''' while循环: ''' LL gcd(LL a, LL…
数论入门2 另一种类型的数论... GCD,LCM 定义\(gcd(a,b)\)为a和b的最大公约数,\(lcm(a,b)\)为a和b的最小公倍数,则有: 将a和b分解质因数为\(a=p1^{a1}p2^{a2}p3^{a3}...pn^{an},b=p1^{b1}p2^{b2}p3^{b3}...pn^{bn}\),那么\(gcd(a,b)=\prod_{i=1}^{n}pi^{min(ai,bi)},lcm(a,b)=\prod_{i=1}^{n}pi^{max(ai,bi)}\)(0和任何…
并不重要的前言 最近学习了一些数论知识,但是自己都不懂自己到底学了些什么qwq,在这里把知识一并总结起来. 也不是很难的gcd和lcm 显而易见的结论: 为什么呢? 根据唯一分解定理: a和b都可被分解为素因子的乘积,形如: 则显而易见的有一下结论: 相乘,得: 得证 几种求gcd的算法 欧几里得算法(辗转相除法) 辗转相减法(优化:stein_gcd) 欧几里得算法 基于事实: 实现: int gcd(int a, int b){ ) ? a : gcd( b , a % b) ; } 简短而…
https://vjudge.net/problem/UVA-10791/origin 以上为题目来源Google翻译得到的题意: 一组整数的LCM(最小公倍数)定义为最小数,即 该集合的所有整数的倍数.有趣的是,可以表示任何正整数作为一组正整数的LCM.例如12可以表示为1.12或12.12或3.4或4.6或1.2.3.4等 在此问题中,您将得到一个正整数N.您必须找出一组至少两个正整数,其LCM为N.如果可能,您必须选择元素总和最小的序列.我们会很高兴如果您仅打印此元素的总和组.因此,对于N…
Describtion First we define: (1) lcm(a,b), the least common multiple of two integers a and b, is the smallest positive integer that is divisible by both a and b. for example, lcm(2,3)=6 and lcm(4,6)=12. (2) gcd(a,b), the greatest common divisor of tw…
二进制GCD     GCD这种通用的算法相信每个OLER都会 ,辗转相除,代码只有四行 : int GCD(int a,int b){ if(b==0) return a; return GCD(b,a%b); } GCD算法使通过辗转相除法来求解两个数的最大公因数,又称欧几里得算法      可以知道:GCD(x,y)=GCD(x,y-x)      我们将b能被a整除记作a|b      那么假设z是最大公因数,那么有:             如果z|x,z|y,则z|(y-x)  (因…
题意:给你两个数,a,c,求出 lcm(a,b)==c 时的 b 的最小值 思路:我们知道一个性质 gcd(a,b)*lcm(a,b) = a*b 由此我们可以得到 b = gcd(a,b)*lcm(a,b)/a 那我们可以先用 lcm(a,b)/a 计算出假定的b值 如果 gcd(a.b)==1 那么b的最小值确定 如果 gcd(a,b)!=1 我们就要通过计算来找到 计算方法为 a=a/gcd(a,b) b=b*gcd(a.b) 样例: 4 6 12 2 6 32 1760 7 16 结果:…
P4917 天守阁的地板 题目背景 在下克上异变中,博丽灵梦为了找到异变的源头,一路打到了天守阁 异变主谋鬼人正邪为了迎击,将天守阁反复颠倒过来,而年久失修的天守阁也因此掉下了很多块地板 异变结束后,恢复了正常大小的小碗回到了天守阁,想要修复这里的地板,她需要知道自己要采购的地板数量(一个惊人的数字),于是,她找到了精通oi的你来帮忙 题目描述 为了使万宝槌能发挥出全部魔力,小碗会将买来的地板铺满一个任意边长的正方形(地板有图案,因此不允许旋转,当然,地板不允许重叠)来达到最大共鸣 现在,她能够…
GCD and LCM Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)Total Submission(s): 2024    Accepted Submission(s): 904 Problem Description Given two positive integers G and L, could you tell me how many solutions of (…
“无体育,不清华”.”每天锻炼一小时,健康工作五十年,幸福生活一辈子”在清华,体育运动绝对是同学们生活中 不可或缺的一部分.为了响应学校的号召,模范好学生王队长决定坚持晨跑.不过由于种种原因,每天都早起去跑 步不太现实,所以王队长决定每a天晨跑一次.换句话说,假如王队长某天早起去跑了步,之后他会休息a-1天,然 后第a天继续去晨跑,并以此类推.王队长的好朋友小钦和小针深受王队长坚持锻炼的鼓舞,并决定自己也要坚持 晨跑.为了适宜自己的情况,小钦决定每b天早起跑步一次,而小针决定每c天早起跑步一次.…
J - Worker Avin meets a rich customer today. He will earn 1 million dollars if he can solve a hard problem. There are n warehouses and m workers. Any worker in the i-th warehouse can handle ai orders per day. The customer wonders whether there exists…
题意: 给两个数,lll 和 ggg,为x , y , z,的最小公倍数和最大公约数,求出x , y , z 的值有多少种可能性 思路: 将x , y , z进行素因子分解 素因子的幂次 x a1 a2 a3 a4 y b1 b2 b3 b4 z c1 c2 c3 c4 gcd min(a1,b1,c1) min(a2,b2,c3)- lcm max(a1,b1,c1) max(a2,b2,c3)- 第一组样例: 6=21 * 31 72= 23 * 32 最大公约数和最小公倍数约分得 12=2…
序:这篇博客我最开始学的时候写的,后来又学了一遍,自我感觉这篇好像有问题,扩展欧几里得建议走这边 首先先说,欧几里德一共有俩,欧几里德和扩展欧几里德,前者非常简单,后者直接变态(因为我太菜) gcd = 最大公因数 普通欧几里德 先说普通的,就是辗转相除法求最大公因数,辗转相除就是基本数论,不讲了直接上代码 int gcd( int a,int b ){ if( b == 0 ) return a; return gcd( b,a%b ); } 递归终止的边界就是a是b的倍数,也就是 a%b =…
一些关于GCD的代码.... #include <iostream> #include <cstdio> #include <cstring> using namespace std; typedef long long int LL; LL EX_GCD(LL a,LL b,LL& x,LL& y) { ) { x=;y=; return a; } else { LL ret=EX_GCD(b,a%b,x,y); int t=x; x=y; y=t-a…
Given the N integers, you have to find the maximum GCD (greatest common divisor) of every possible pair of these integers. Input The first line of input is an integer N (1 < N < 100) that determines the number of test cases. The following N lines ar…
题目传送门 传送门 这个官方题解除了讲了个结论,感觉啥都没说,不知道是因为我太菜了,还是因为它真的啥都没说. 如果 $x \geqslant y$,显然 gcd(x, y) 只会被调用一次. 否则考虑每次操作前的数对应该是 $(y, y + kx)$.这样仍然不好处理.考虑忽略掉达到的 $a < b$ 的状态,那么每次的 $k \geqslant 1$.那么当较大数加上较小数的时候对应将 $k$ 加上 1,对应交换两边的数,然后将 $k$ 加上1.特别地,第一次操作不能做大加上小,因为第一次操作…
关于GCD的一些定理或运用的学习: 1. 2.二进制算法求GCD 思想:使得最后的GCD没有2(提前把2提出来) 代码实现: #include <cstdio> #define int long long int gcd(int x,int y) { int i,j; ) return y; ) return x; ;==(x&);++i)x>>=;//x & 1 用来判断x是否为偶数 ;==(y&);++j)y>>=;//同理,用来消去x,y因…
先放知识点: 莫比乌斯反演 卢卡斯定理求组合数 乘法逆元 快速幂取模 GCD of Sequence Alice is playing a game with Bob. Alice shows N integers a 1, a 2, -, a N, and M, K. She says each integers 1 ≤ a i ≤ M. And now Alice wants to ask for each d = 1 to M, how many different sequences b…
Describtion In mathematics, the greatest common divisor (gcd) of two or more integers, when at least one of them is not zero, is the largest positive integer that divides the numbers without a remainder. For example, the GCD of 8 and 12 is 4.-Wikiped…
传送门 题解 题解里面说得很清楚了. 大约就是单独考虑每个数的贡献,然后看一下每个序列里有多少区间是没有这个数的,乘起来就好了. 为了处理修改我们需要每个值建一棵线段树来搞,但是窝zz了,写了线段树套线段树,比正解多一个log. 一开始想着不调map.set,然后发现特别难写.最后还是调了map…… 比赛的时候挂了0没有逆元的坑啊! #include<map> #include<cstdio> #include<algorithm> #define pii pair #…
题意:三个数x, y, z. 给出最大公倍数g和最小公约数l.求满足条件的x,y,z有多少组. 题解:设n=g/l n=p1^n1*p2^n2...pn^nk (分解质因数 那么x = p1^x1 * p2^x2 * .... ^ pn^xk y = p1^y1 * p2^y2 * .... ^ pn^yk x = p1^z1 * p2^z2 * .... ^ pn^zk 那么对于任意i (0<=i<=k) 都有 min(xi, yi, zi) = 0, max(xi, yi, zi) = n…
gcd即最大公约数,lcm即最小公倍数. 首先给出a×b=gcd×lcm 证明:令gcd(a,b)=k,a=xk,b=yk,则a×b=x*y*k*k,而lcm=x*y*k,所以a*b=gcd*lcm. 所以求lcm可以先求gcd,而求gcd的方法就是辗转相除法,也叫做欧几里德算法,核心为gcd(m,n)=gcd(n,m%n) 证明:令 k=gcd(m,n),则 k|m 并且 k|n; 令 j=gcd(n, m mod n), 则j|n 并且 j|(m mod n); 对于m, 可以用n 表示为…
gcd(a, b),就是求a和b的最大公约数 lcm(a, b),就是求a和b的最小公倍数 然后有个公式 a*b = gcd * lcm     ( gcd就是gcd(a, b), ( •̀∀•́ ) 简写你懂吗) 解释(不想看就跳过){ 首先,求一个gcd,然后... a / gcd 和 b / gcd 这两个数互质了,也就是 gcd(   a / gcd ,b / gcd  )  =  1,然后... lcm = gcd *  (a / gcd) * (b / gcd) lcm = (a *…
gcd(a, b),就是求a和b的最大公约数 lcm(a, b),就是求a和b的最小公倍数 然后有个公式 a*b = gcd * lcm     ( gcd就是gcd(a, b), ( •̀∀•́ ) 简写你懂吗) 解释(不想看就跳过){ 首先,求一个gcd,然后... a / gcd 和 b / gcd 这两个数互质了,也就是 gcd(   a / gcd ,b / gcd  )  =  1,然后... lcm = gcd *  (a / gcd) * (b / gcd) lcm = (a *…
II U C   ONLINE   C ON TEST  Problem D: GCD LCM Input: standard input Output: standard output The GCD of two positive integers is the largest integer that divides both the integers without any remainder. The LCM of two positive integers is the smalle…
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=3071 题目大意: 给定一个长度为n的序列m次操作,操作的种类一共有三种 查询 L :查询一个区间的所有的数的最小公倍数modp G :查询一个区间的所有的数的最大公约数modp 修改 C :将给定位置的值修改成x 解题思路: 注意数据范围,每个数字不超过100,所以100以内的质因子最多25个,如果直接求解lcm和gcd的话,long long也是存不下的,所以采用存储质因子的指数,但是如果每个节…
求最大公约数(GCD)和求最小公倍数(LCM): 首先是求最大公约数,我们可以利用辗转相除法来求 1 int gcd(int a,int b) 2 { 3 if(b==0) 4 return a; 5 return gcd(b,a%b);6 } 这就是GCD的核心代码. 剩下的LCM与gcd也有很大的关系,首先最大公约数也是最小公倍数的约数. 所以最小公倍数除掉最大公约数就剩下这两个数不相交的因子. 就比如12和8,提一个最大公约数4出来就只剩下3和2了. 而3*2则是他们不相交的因子. 所以最…
1.gcd 递归实现 int gcd(int i,int j){ if(j==0) return i; else return gcd(j,i%j);} 2.lcm int gcd(int i,int j){if(j==0) return i;else return gcd(j,i%j);} int lcm(int i ,int j) { return i*j/gcd(i*j); } 3. E - Wolf and Rabbit 兔子坑问题 There is a hill with n hole…
一.题目  Gcd & Lcm game 二.分析 非常好的一题. 首先考虑比较暴力的做法,肯定要按区间进行处理,对于$lcm$和$gcd$可以用标准的公式进行求,但是求$lcm$的时候是肯定会爆$long long$的. 考虑用素数分解,将所有的数分解后,发现素因子的个数有限,且每个因子的幂也有限,最多的也就是$2^_6$,然后可以考虑将素因子用二进制的每一位进行表示.对于$2,3,5,7$可能会要的多点,所以多给给几位就可以了,最后发现,刚好可以$32$位以内. 这里就需要写两个转换函数,然…
一.一些性质 \(gcd(a,b)=gcd(b,a)\) \(gcd(-a,b)=gcd(a,b)\) \(gcd(a,a)=|a|, gcd(a,0)=|a|\) \(gcd(a,1)=1\) \(gcd(a,b)=gcd(b, a mod b)\) \(gcd(a,b)=gcd(b, a-b)\) \(gcd(a,b)*lcm(a,b)=ab\) \(a|t,b|t⇒lcm(a,b)\) \(...\) 二.最大公约数-gcd 1.欧几里得辗转相除法 证明: 设\(a=qb+r\),\(d|…