论文信息 论文标题:Conditional Adversarial Domain Adaptation论文作者:Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain论文来源:JMLR 2016论文地址:download 论文代码:download引用次数:5292 1 背景 1. 1 问题 普通的对抗域自适应方法仅独立对齐特征,而未对于标签进行对齐,往往不充分 ==============> 对齐特征与类别的联合分布 当数据…
论文信息 论文标题:SimGRACE: A Simple Framework for Graph Contrastive Learning without Data Augmentation论文作者:Jun Xia, Lirong Wu, Jintao Chen, Bozhen Hu, Stan Z. Li论文来源:2022, WWW论文地址:download 论文代码:download 1 Introduction 对比学习种数据增强存在的三个问题: First, the augmentati…
论文信息 论文标题:Improve Unsupervised Domain Adaptation with Mixup Training论文作者:Shen Yan, Huan Song, Nanxiang Li, Lincan Zou, Liu Ren论文来源:arxiv 2020论文地址:download 论文代码:download引用次数:93 1 Introduction 现有方法分别对源域和目标域施加约束,忽略了它们之间的重要相互作用.本文使用 mixup 来加强训练约束来直接解决目标域…
1 所选论文 论文题目: <Unsupervised Domain Adaptation with Residual Transfer Networks> 论文信息: NIPS2016, Mingsheng Long, Han Zhu, Jianmin Wang, Tsinghua University 论文:http://papers.nips.cc/paper/6110-unsupervised-domain-adaptation-with-residual-transfer-networ…
论文信息 论文标题:Cluster-Guided Semi-Supervised Domain Adaptation for Imbalanced Medical Image Classification论文作者:S. Harada, Ryoma Bise, Kengo Araki论文来源:ArXiv 2 March 2023论文地址:download 论文代码:download视屏讲解:click 1 摘要 一种半监督域自适应方法,对医学图像分类任务中常见的类不平衡情况具有鲁棒性. 为了稳健性…
论文信息 论文标题:Cross-domain Contrastive Learning for Unsupervised Domain Adaptation论文作者:Rui Wang, Zuxuan Wu, Zejia Weng, Jingjing Chen, Guo-Jun Qi, Yu-Gang Jiang论文来源:aRxiv 2022论文地址:download 论文代码:download 1 Introduction 无监督域自适应(UDA)的目的是将从一个完全标记的源域学习到的知识转移到…
论文信息 论文标题:CDTrans: Cross-domain Transformer for Unsupervised Domain Adaptation论文作者:Tongkun Xu, Weihua Chen, Pichao Wang, Fan Wang, Hao Li, Rong Jin论文来源:ICLR 2022论文地址:download 论文代码:download 1 Introduction 无监督域自适应(Unsupervised domain adaptation,UDA)的目的…
论文信息 论文标题:Probabilistic Contrastive Learning for Domain Adaptation论文作者:Junjie Li, Yixin Zhang, Zilei Wang, Keyu Tu论文来源:aRxiv 2022论文地址:download 论文代码:download 1 Abstract 标准的对比学习用于提取特征,然而对于 Domain Adaptation 任务,表现不佳,主要原因是在优化过程中没有涉及类权值优化,这不能保证所产生的特征都围绕着从…
论文信息 论文标题:Contrastive Adaptation Network for Unsupervised Domain Adaptation论文作者:Guoliang Kang, Lu Jiang, Yi Yang, Alexander G Hauptmann论文来源:CVPR 2019论文地址:download 论文代码:download 1 Preface 出发点: 无监督域自适应(UDA)对目标域数据进行预测,而标签仅在源域中可用: 以往的方法将忽略类信息的域差异最小化,可能导致…
论文信息 论文标题:ToAlign: Task-oriented Alignment for Unsupervised Domain Adaptation论文作者:Guoqiang Wei, Cuiling Lan, Wenjun Zeng, Zhizheng Zhang, Zhibo Chen论文来源:NeurIPS 2021论文地址:download 论文代码:download 1 域对抗介绍 域对抗思想: $\begin{array}{l}\underset{D}{\operatornam…