算法学习笔记(3.1): ST算法】的更多相关文章

倍增 目录 倍增 查找 洛谷P2249 重点 变式练习 快速幂 ST表 扩展 - 运算 扩展 - 区间 变式答案 倍增,字面意思即"成倍增长" 他与二分十分类似,都是基于"2"的划分思想 那么具体是怎么样,我们以一个例子来看 ST表才是文章的重点 QwQ 查找 洛谷P2249 依据题面,我们知道这是一个单调序列,当然可以通过二分的方式来寻找答案,但是既然我们这里讲倍增,那么就用倍增来写吧! 首先,我们先贴上核心代码 void find(int k) { int i…
最近公共祖先(LCA) 目录 最近公共祖先(LCA) 定义 求法 方法一:树上倍增 朴素算法 复杂度分析 方法二:dfs序与ST表 初始化与查询 复杂度分析 方法三:树链剖分 DFS序 性质 重链 重边 重子结点 剖分方法 剖分作用 复杂度分析 树链剖分拓展 最近公共祖先是树上的概念,不了解树的出门左转百度:树(数据结构名词)_百度百科 定义 假设我们需要求 x 和 y 的最近公共祖先,这里有多种等价的定义 路径x到y上深度最小的点 x和y公共祖先中深度最大的点 x和y在这棵树上距离最近的公共祖…
原始地址:C / C++算法学习笔记(8)-SHELL排序 基本思想 先取一个小于n的整数d1作为第一个增量(gap),把文件的全部记录分成d1个组.所有距离为dl的倍数的记录放在同一个组中.先在各组内进行直接插入排序:然后,取第二个增量d2<d1重复上述的分组和排序,直至所取的增量dt=1(dt<dt-l<:…<d2<d1),即所有记录放在同一组中进行直接插入排序为止. 该方法实质上是一种分组插入方法. 算法编码 void shellSort(int v[], int n)…
Manacher算法学习笔记 DECLARATION 引用来源:https://www.cnblogs.com/grandyang/p/4475985.html CONTENT 用途:寻找一个字符串的最长回文子串 时间复杂度:O(N) 算法步骤: 1.添加特殊字符 由于回文串的长度可奇可偶,比如"bob"是奇数形式的回文,"noon"就是偶数形式的回文,马拉车算法的第一步是预处理,做法是在每一个字符的左右都加上一个特殊字符,比如加上'#',那么 bob -->…
机器学习实战(Machine Learning in Action)学习笔记————08.使用FPgrowth算法来高效发现频繁项集 关键字:FPgrowth.频繁项集.条件FP树.非监督学习作者:米仓山下时间:2018-11-3机器学习实战(Machine Learning in Action,@author: Peter Harrington)源码下载地址:https://www.manning.com/books/machine-learning-in-actiongit@github.c…
机器学习实战(Machine Learning in Action)学习笔记————07.使用Apriori算法进行关联分析 关键字:Apriori.关联规则挖掘.频繁项集作者:米仓山下时间:2018-11-2机器学习实战(Machine Learning in Action,@author: Peter Harrington)源码下载地址:https://www.manning.com/books/machine-learning-in-actiongit@github.com:pbharri…
机器学习实战(Machine Learning in Action)学习笔记————02.k-邻近算法(KNN) 关键字:邻近算法(kNN: k Nearest Neighbors).python.源码解析.测试作者:米仓山下时间:2018-10-21机器学习实战(Machine Learning in Action,@author: Peter Harrington)源码下载地址:https://www.manning.com/books/machine-learning-in-actiong…
[ML学习笔记] 朴素贝叶斯算法(Naive Bayesian) 贝叶斯公式 \[P(A\mid B) = \frac{P(B\mid A)P(A)}{P(B)}\] 我们把P(A)称为"先验概率"(Prior probability),即在B事件发生之前,对A事件概率的一个判断.P(A|B)称为"后验概率"(Posterior probability),即在B事件发生之后,对A事件概率的重新评估.P(B|A)/P(B)称为"可能性函数"(Lik…
Effective STL 学习笔记 31:排序算法 */--> div.org-src-container { font-size: 85%; font-family: monospace; } pre.src { background-color:#f8f4d7 } p {font-size: 15px} li {font-size: 15px} Table of Contents partial_sort nth_element stability partition 总结 1 parti…
\(Johnson\)算法学习笔记. 在最短路的学习中,我们曾学习了三种最短路的算法,\(Bellman-Ford\)算法及其队列优化\(SPFA\)算法,\(Dijkstra\)算法.这些算法可以快速的求出单源最短路,即一个源点的最短路. 而\(Floyd\)算法,这个及其简短的算法,可以以\(O(n^3)\)的复杂度算出任意一对点之间的最短路. 我们发现,\(floyd\)算法的时间复杂度和边的数量没有多大的关系,也就是说,\(floyd\)使用的最优条件是稠密图. 那么问题来了,如果我们面…