一.实验目的 在己知f(x),x∈[a,b]的表达式,但函数值不便计算或不知f(x),x∈[a,b]而又需要给出其在[a,b]上的值时,按插值原则f(xi)=yi (i=0,1,……, n)求出简单函数P(x)(常是多项式),使其在插值基点xi处成立(xi)= yi(i=0,1,……,n),而在[a,b]上的其它点处成立f(x)≍P(x). 二.实验原理 三.实验内容 求f(x)=x4在[0,2]上按5个等距节点确定的Lagrange插值多项式 四.实验程序    (1).m文件 %输入的量:X…
图形渲染中,idw反距离权重插值算法是一个应用非常广泛的方法,但是js实现的比较少,目前实现一个: //idw算法 //输入[[x:0,y:0,v:0],[x:0,y:0,v:0],[x:0,y:0,v:0]] function idwcomputer(datas,result){ if(datas.lenght<3) return result; var m0=datas.length; var m1=result.length; //console.info(datas); //距离列表 v…
全域多项式插值指的是在整个插值区域内形成一个多项式函数作为插值函数.关于多项式插值的基本知识,见“计算基本理论”. 在单项式基插值和牛顿插值形成的表达式中,求该表达式在某一点处的值使用的Horner嵌套算法啊,见"Horner嵌套算法". 1. 单项式(Monomial)基插值 1)插值函数基 单项式基插值采用的函数基是最简单的单项式:$$\phi_j(t)=t^{j-1}, j=1,2,...n;\quad f(t)=p_{n-1}(t)=x_1+x_2t+x_3t^2+...x_n…
反距离权重 (IDW) 插值显式假设:彼此距离较近的事物要比彼此距离较远的事物更相似.当为任何未测量的位置预测值时,反距离权重法会采用预测位置周围的测量值.与距离预测位置较远的测量值相比,距离预测位置最近的测量值对预测值的影响更大.反距离权重法假定每个测量点都有一种局部影响,而这种影响会随着距离的增大而减小.由于这种方法为距离预测位置最近的点分配的权重较大,而权重却作为距离的函数而减小,因此称之为反距离权重法.…
前言 这里的全家桶目前只包括了\(ln,exp,sqrt\).还有一些类似于带余数模,快速幂之类用的比较少的有时间再更,\(NTT\)这种前置知识这里不多说. 还有一些基本的导数和微积分内容要了解,建议不懂的可以先去翻翻高二数学书. 之后多项式算法基本是一环扣一环的,所以前面的看不懂对于后面的理解会造成很大影响. 本博客涉及内容偏浅 Tips 这里是一些我个人的模板书写习惯 习惯相关的问题:默认将读入的\(n\)变为\(2\)的整数次幂形式,目前为止这样的做法都不会影响正确性 正确性相关的问题:…
题面 题解 设多项式的第a项为权值和为a的二叉树个数,多项式的第a项表示是否为真,即 则,所以F是三个多项式的卷积,其中包括自己: ,1是F的常数项,即. 我们发现这是一个一元二次方程,可以求出,因为g的常数项为零,所以1-4g的常数项为1,的常数项也为1,的常数项就为零,就跑不了逆元,所以舍掉. 最终,跑一个多项式开根和一个多项式求逆就行. CODE 大常数TLE的代码, 自己优化吧(逃 #include<cstdio> #include<iostream> #include&l…
摘取自https://www.cnblogs.com/Junbo20141201/p/9369860.html,感谢原作者的详细解读. #include <stdio.h> ][] = {0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76, 0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4,…
转载于博客:各种距离 在做分类时常常需要估算不同样本之间的相似性度量(SimilarityMeasurement),这时通常采用的方法就是计算样本间的"距离"(Distance).采用什么样的方法计算距离是很讲究,甚至关系到分类的正确与否. 本文的目的就是对常用的相似性度量作一个总结. 本文目录: 1.欧氏距离 2.曼哈顿距离 3. 切比雪夫距离 4. 闵可夫斯基距离 5.标准化欧氏距离 6.马氏距离 7.夹角余弦 8.汉明距离 9.杰卡德距离& 杰卡德相似系数 10.相关系数…
本文链接:https://blog.csdn.net/Dooonald/article/details/78545461算术均值 close all clear all f=imread('D:/testData/filtering.tif'); [w,h]=size(f);image= f(:,:);fsize1=3;fsize2=5;fsize3=9; fssize1=(fsize1-1)/2;fssize2=(fsize2-1)/2;fssize3=(fsize3-1)/2; figure…
一.实验目的 在己知f(x),x∈[a,b]的表达式,但函数值不便计算或不知f(x),x∈[a,b]而又需要给出其在[a,b]上的值时,按插值原则f(xi)=yi (i=0,1,……, n)求出简单函数P(x)(常是多项式),使其在插值基点xi处成立(xi)= yi(i=0,1,……,n),而在[a,b]上的其它点处成立f(x)≍P(x). 二.实验原理 三.实验内容 求f(x)=x4在[0,2]上按5个等距节点确定的Lagrange插值多项式 四.实验程序 import matplotlib.…