在<机器学习---逻辑回归(一)(Machine Learning Logistic Regression I)>一文中,我们讨论了如何用逻辑回归解决二分类问题以及逻辑回归算法的本质.现在来看一下多分类的情况. 现实中相对于二分类问题,我们更常遇到的是多分类问题.多分类问题如何求解呢?有两种方式.一种是方式是修改原有模型,另一种方式是将多分类问题拆分成一个个二分类问题解决. 先来看一下第一种方式:修改原有模型.即:把二分类逻辑回归模型变为多分类逻辑回归模型. (二分类逻辑回归称为binary…
逻辑回归(Logistic Regression)是一种经典的线性分类算法.逻辑回归虽然叫回归,但是其模型是用来分类的. 让我们先从最简单的二分类问题开始.给定特征向量x=([x1,x2,...,xn])T以及每个特征的权重w=([w1,w2,...,wn])T,阈值为b,目标y是两个分类标签---1和-1.为了便于叙述,把b并入权重向量w,记作,特征向量则扩充为.(为了简便的缘故,下面还是都写成w和x) 事实上,我们已经学习过一种分类算法了.在<机器学习---感知机(Machine Learn…
1. Variable definitions m : training examples' count \(X\) : design matrix. each row of \(X\) is a training example, each column of \(X\) is a feature \[X = \begin{pmatrix} 1 & x^{(1)}_1 & ... & x^{(1)}_n \\ 1 & x^{(2)}_1 & ... & x…
1- 问题提出 2- 逻辑回归 3- 理论推导 4- Python/Spark实现 # -*- coding: utf-8 -*- from pyspark import SparkContext from math import * theta = [0, 0, 0] #初始theta值 alpha = 0.001 #学习速率 def inner(x, y): return sum([i*j for i,j in zip(x,y)]) def func(lst): h = (1 + exp(-…
机器学习系统设计(Building Machine Learning Systems with Python)- Willi Richert Luis Pedro Coelho 总述 本书是 2014 的,看完以后才发现有第二版的更新,2016.建议阅读最新版,有能力的建议阅读英文版,中文翻译有些地方比较别扭(但英文版的书确实是有些贵). 我读书的目的:泛读主要是想窥视他人思考的方式. 作者写书的目标:面向初学者,但有时间看看也不错.作者说"我希望它能激发你的好奇心,并足以让你保持渴望,不断探索…
本文讨论的关键词:Logistic Regression(逻辑回归).Neural Networks(神经网络) 之前在学习LR和NN的时候,一直对它们独立学习思考,就简单当做是机器学习中的两个不同的models,从来没有放在一起观察过,最近通过阅读网络资料,才发现,原来LR和NN之间是有一定的联系的,了解它们之间的联系后,可以更好地理解 Logistic Regression(逻辑回归)和Neural Networks(神经网络) Logistic Regression:典型的二值分类器,用来…
Evernote的同步分享:Machine Learning-Linear Regression 版权声明:本文博客原创文章.博客,未经同意,不得转载.…
最小二乘线性回归,感知机,逻辑回归的比较:   最小二乘线性回归 Least Squares Linear Regression 感知机 Perceptron 二分类逻辑回归 Binary Logistic Regression 多分类逻辑回归 Multinomial Logistic Regression 特征x x=([x1,x2,...,xn,1])T 权重w w=([w1,w2,...,wn,b])T 目标y 实数(负无穷大到正无穷大) 两个类别 1,-1 两个类别 0,1 多个类别 c…
个人分类: 机器学习 本文为吴恩达<机器学习>课程的读书笔记,并用python实现. 前一篇讲了线性回归,这一篇讲逻辑回归,有了上一篇的基础,这一篇的内容会显得比较简单. 逻辑回归(logistic regression)虽然叫回归,但他做的事实际上是分类.这里我们讨论二元分类,即只分两类,y属于{0,1}. 选择如下的假设函数: 这里写图片描述 其中: 这里写图片描述 上式称为逻辑函数或S型函数,图像如下图: 这里写图片描述 可以看到,当z趋向正无穷,g(z)趋向1,当z趋向负无穷g(z)趋…
1 前言 虽然该机器学习算法名字里面有"回归",但是它其实是个分类算法.取名逻辑回归主要是因为是从线性回归转变而来的. logistic回归,又叫对数几率回归. 2 回归模型 2.1 线性回归模型 $h_\theta(x_1, x_2, ...x_n) = \theta_0 + \theta_{1}x_1 + ... + \theta_{n}x_{n}$ 矩阵化如下: $h_θ(X)=Xθ$ 对应损失函数,一般用 均方误差 作为损失函数.损失函数代数法表示如下: $J(\theta_0…
1.Logistic回归的本质 逻辑回归是假设数据服从伯努利分布,通过极大似然函数的方法,运用梯度上升/下降法来求解参数,从而实现数据的二分类. 1.1.逻辑回归的基本假设 ①伯努利分布:以抛硬币为例,每次试验中出现正面的概率为P,那么出现负面的概率为1-P.那么如果假设hθ(x)为样本为正的概率,1-hθ(x)为样本为负的概率. 那么模型为hθ(x:θ)=P,并假设概率函数为Sigmoid函数 ②Sigmoid函数 1.2.逻辑回归的损失函数 逻辑回归的损失是它的极大似然函数 1.3.逻辑回归…
简单总结一下机器学习最常见的两个函数,一个是logistic函数,另一个是softmax函数,若有不足之处,希望大家可以帮忙指正.本文首先分别介绍logistic函数和softmax函数的定义和应用,然后针对两者的联系和区别进行了总结. 1. logistic函数 1.1 logistic函数定义 引用wiki百科的定义: A logistic function or logistic curve is a common "S" shape (sigmoid curve). 其实逻辑斯…
李宏毅老师的机器学习课程和吴恩达老师的机器学习课程都是都是ML和DL非常好的入门资料,在YouTube.网易云课堂.B站都能观看到相应的课程视频,接下来这一系列的博客我都将记录老师上课的笔记以及自己对这些知识内容的理解与补充.(本笔记配合李宏毅老师的视频一起使用效果更佳!) ML Lecture 4:Classification:Probabilistic Generative Model 在这堂课中,老师主要根据宝可梦各属性值预测其类型为例说明分类问题,其训练数据为若干宝可梦的各属性值及其类型…
机器学习诊断(Machine learning diagnostic) Diagnostic : A test that you can run to gain insight what is / isn't working with a learning algorithm, and gain guidance as to how best to improve its performance. Diagnostics can take time to implement, but doing…
本博客是针对Andrew Ng在Coursera上的machine learning课程的学习笔记. 目录 在大数据集上进行学习(Learning with Large Data Sets) 随机梯度下降(Stochastic Gradient Descent) 小堆梯度下降(Mini-Batch Gradient Descent) 保证随机GD的收敛与学习速率的选择 在线学习(Online Learning) Map Reduce 和 数据并行化 在大数据集上进行学习(Learning wit…
Week1 Bird recognition in the city of Peacetopia (case study)( 和平之城中的鸟类识别(案例研究)) 1.Problem Statement This example is adapted from a real production application, but with details disguised to protect confidentiality. (问题陈述:这个例子来源于实际项目,但是为了保护机密性,我们会对细节…
逻辑回归二分类 今天尝试写了一下逻辑回归分类,把代码分享给大家,至于原理的的话请戳这里 https://blog.csdn.net/laobai1015/article/details/78113214   (在这片博客的基础上我加了一丢丢东西). 用到的预测函数为 其中,h为预测函数(大于0.5为一类,小于等于0.5为另一类).θ为各个特征的参数.θ=[θ1,θ2,θ3...]T 损失函数J(θ)为 利用梯度下降算法进行参数的更新公式如下: 其中,α是学习率参数,λ是正则项参数,需要自己输入.…
import numpy as np import matplotlib.pyplot as plt from matplotlib import cm from mpl_toolkits.mplot3d import Axes3D from sklearn import datasets, linear_model from sklearn.model_selection import train_test_split def load_data(): # 使用 scikit-learn 自带…
Roadmap Soft-Margin SVM as Regularized Model SVM versus Logistic Regression SVM for Soft Binary Classification Kernel Logistic Regression Summary…
1.逻辑函数 假设数据集有n个独立的特征,x1到xn为样本的n个特征.常规的回归算法的目标是拟合出一个多项式函数,使得预测值与真实值的误差最小: 而我们希望这样的f(x)能够具有很好的逻辑判断性质,最好是能够直接表达具有特征x的样本被分到某类的概率.比如f(x)>0.5的时候能够表示x被分为正类,f(x)<0.5表示分为反类.而且我们希望f(x)总在[0, 1]之间.有这样的函数吗? sigmoid函数就出现了.这个函数的定义如下: 先直观的了解一下,sigmoid函数的图像如下所示(来自ht…
package Spark_MLlib import javassist.bytecode.SignatureAttribute.ArrayType import org.apache.spark.sql.SparkSession import org.apache.spark.ml.{Pipeline, PipelineModel} import org.apache.spark.ml.classification.LogisticRegression import org.apache.sp…
我们知道感知器算法对于不能完全线性分割的数据是无能为力的,在这一篇将会介绍另一种非常有效的二分类模型--逻辑回归.在分类任务中,它被广泛使用 逻辑回归是一个分类模型,在实现之前我们先介绍几个概念: 几率(odds ratio): \[ \frac {p}{(1-p)} \] 其中p表示样本为正例的概率,当然是我们来定义正例是什么,比如我们要预测某种疾病的发生概率,那么我们将患病的样本记为正例,不患病的样本记为负例.为了解释清楚逻辑回归的原理,我们先介绍几个概念. 我们定义对数几率函数(logit…
(搬运工) 逻辑回归(LR)与SVM的联系与区别 LR 和 SVM 都可以处理分类问题,且一般都用于处理线性二分类问题(在改进的情况下可以处理多分类问题,如LR的Softmax回归用在深度学习的多分类中) 区别: 1.LR 是 参数模型,SVM是非参数模型,(svm中的 linear 和 rbf 是指线性可分和不可分的问题) 2.从目标函数来看,逻辑回归的目标是使得经验风险最小化,采用的是logistical loss,svm则是最大化分类间隔,使用的损失函数是合页损失( hinge损失):当样…
线性回归是机器学习中最基础的模型,掌握了线性回归模型,有利于以后更容易地理解其它复杂的模型. 线性回归看似简单,但是其中包含了线性代数,微积分,概率等诸多方面的知识.让我们先从最简单的形式开始. 一元线性回归(Simple Linear Regression): 假设只有一个自变量x(independent variable,也可称为输入input, 特征feature),其与因变量y(dependent variable,也可称为响应response, 目标target)之间呈线性关系,当然x…
本章介绍了机器学习的一些基本概念,已经应用场景.这部分知识在其它地方也经常看到,不再赘述. 这里只记录一些作者提到的,有趣的知识点. 回归(regression)名字的来源:这是由Francis Galton引入的一个统计学术语,当时他在研究这一现象:个子很高的人,其子女一般会比他们低.由于孩子是变低的,Francis Galton称之为:向平均值的回归(regression to the mean).从此他所使用的这种用于分析变量之间相关性的研究方法,被称作回归. 在机器学习中,一个属性(at…
话说上一次写这个笔记是13年的事情了···那时候忙着实习,找工作,毕业什么的就没写下去了,现在工作了有半年时间也算稳定了,我会继续把这个笔记写完.其实很多章节都看了,不过还没写出来,先从第5章开始吧,第2-4章比较基础,以后再补! 第5章 Neural Networks 在第3章和第4章,我们已经学过线性的回归和分类模型,这些模型由固定的基函数(basis functions)的线性组合组成.这样的模型具有有用的解析和计算特性,但是因为维度灾难(the curse of dimensionali…
11.1  首先要做什么 11.2  误差分析 11.3  类偏斜的误差度量 11.4  查全率和查准率之间的权衡 11.5  机器学习的数据 11.1  首先要做什么 在接下来的视频中,我将谈到机器学习系统的设计.这些视频将谈及在设计复杂的机器 学习系统时,你将遇到的主要问题.同时我们会试着给出一些关于如何巧妙构建一个复杂的机器学习系统的建议.下面的课程的的数学性可能不是那么强,但是我认为我们将要讲到的 这些东西是非常有用的,可能在构建大型的机器学习系统时,节省大量的时间. 本周以一个垃圾邮件…
Python机器学习 机器学习,如今最令人振奋的计算机领域之一.看看那些大公司,Google.Facebook.Apple.Amazon早已展开了一场关于机器学习的军备竞赛.从手机上的语音助手.垃圾邮件过滤到逛淘宝时的物品推荐,无一不用到机器学习技术. 如果你对机器学习感兴趣,甚至是想从事相关职业,那么这本书非常适合作为你的第一本机器学习资料.市面上大部分的机器学习书籍要么是告诉你如何推导模型公式要么就是如何代码实现模型算法,这对于零基础的新手来说,阅读起来相当困难.而这本书,在介绍必要的基础概…
11.1  首先要做什么 11.2  误差分析 11.3  类偏斜的误差度量 11.4  查全率和查准率之间的权衡 11.5  机器学习的数据 11.1  首先要做什么 在接下来的视频将谈到机器学习系统的设计.这些视频将谈及在设计复杂的机器学习系统时,将遇到的主要问题.同时会试着给出一些关于如何巧妙构建一个复杂的机器学习系统的建议.下面的课程讲的东西数学性不强,但是非常有用的,可能在构建大型的机器学习系统时,节省大量的时间. 本周以一个垃圾邮件分类器算法为例进行讨论. 为了解决这样一个问题,首先…
11.1 首先要做什么 在接下来的视频中,我将谈到机器学习系统的设计.这些视频将谈及在设计复杂的机器学习系统时,你将遇到的主要问题.同时我们会试着给出一些关于如何巧妙构建一个复杂的机器学习系统的建议.下面的课程的的数学性可能不是那么强,但是我认为我们将要讲到的这些东西是非常有用的,可能在构建大型的机器学习系统时,节省大量的时间. 本周以一个垃圾邮件分类器算法为例进行讨论. 为了解决这样一个问题,我们首先要做的决定是如何选择并表达特征向量…