一 内存性能指标 1.系统内存使用情况 共享内存:是通过tmpfs实现的,所以它的大小也就是tmpfs使用的大小了tmpfs其实也是一种特殊的缓存 可用内存:是新进程可以使用的最大内存它包括剩余内存和可回收缓存. 缓存包括两部分: 1.一部分是磁盘读取文件的页缓存,用来缓存从磁盘读取的数据,可以加快以后再次访问的速度. 2.另一部分,则是 Slab 分配器中的可回收内存2.进程内存使用情况, 缓冲区是对原始磁盘块的临时存储,用来缓存将要写入磁盘的数据.这样,内核就可以把分散的写集中起来,统一优化…
一.性能指标 1.性能指标思维导图 2.CPU使用率 3.CPU平均负载 4.CPU缓存的命中率 CPU 在访问内存的时候,免不了要等待内存的响应.为了协调这两者巨大的性能差距,CPU 缓存(通常是多级缓存)就出现了 二.性能工具 掌握了 CPU 的性能指标,我们还需要知道,怎样去获取这些指标,也就是工具的使用 1.根据指标找工具 2.根据工具找指标 三.把性能指标和工具联系起来 四.如何迅速分析CPU瓶颈 通过这张图你可以发现,这三个命令,几乎包含了所有主要的CPU性能指标 1.从 top 的…
一.环境准备 1.安装软件包 终端1 机器配置:2 CPU,8GB 内存 预先安装 docker.sysstat.perf等工具 [root@luoahong ~]# docker -v Docker version 18.09.1, build 4c52b90 [root@luoahong ~]# rpm -qa|grep sysstat sysstat-12.1.2-1.x86_64 终端2 机器配置:1 CPU,2GB 内存 预先安装ab 等工具 [root@nfs ~]#yum -y i…
一.缓存命中率 1.引子 1.我们想利用缓存来提升程序的运行效率,应该怎么评估这个效果呢? 用衡量缓存好坏的指标 2.有没有哪个指标可以衡量缓存使用的好坏呢? 缓存命中率 3.什么是缓存命中率? 所谓缓存命中率,是指直接通过缓存获取数据的请求次数,占所有数据请求次数的百分比.命中率越高,表示使用缓存带来的收益越高,应用程序的性能也就越好 2.查看系统命中情况的工具 1.缓存在高并发系统的应用 实际上.缓存是现在所有高并发系统必须的核心模块,主要作用就是把经常访问的数据(也就是热点数据),提取读入…
一.怎么查看系统上下文切换情况 通过前面学习我么你知道,过多的上下文切换,会把CPU时间消耗在寄存器.内核栈以及虚拟内存等数据的保存和回复上,缩短进程真正运行的时间,成了系统性能大幅下降的一个元凶 既然上下文切换对系统性能影响那么大,你肯定迫不及待想知道,道题怎么查看上下文切换 1.系统总的上下文切换情况 [root@nfs ~]# vmstat 1 procs -----------memory---------- ---swap-- -----io---- -system-- ------c…
一.案例环境描述 1.环境准备 2CPU,4GB内存 预先安装docker sysstat工具 2.温馨提示 案例中 Python 应用的核心逻辑比较简单,你可能一眼就能看出问题,但实际生产环境中的源码就复杂多了.所以,我依旧建议,操作之前别看源码,避免先入为主,要把它当成一个黑盒来分析.这样 你可以更好把握住,怎么从系统的资源使用问题出发,分析出瓶颈所在的应用,以及瓶颈在应用中大概的位置 3.测试环境准备 1.运行目标应用 docker run --name=app -p 10000:80 -…
一.环境准备 1.安装软件包 终端1 机器配置:2 CPU,8GB 内存 预先安装 docker.sysstat.perf等工具 [root@luoahong ~]# docker -v Docker version 18.09.1, build 4c52b90 [root@luoahong ~]# rpm -qa|grep sysstat sysstat-12.1.2-1.x86_64 终端2 机器配置:1 CPU,2GB 内存 预先安装ab 等工具 [root@nfs ~]#yum -y i…
一.进程的状态 1.命令查看 top PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND 28961 root 20 0 43816 3148 4040 R 3.2 0.0 0:00.01 top 620 root 20 0 37280 33676 908 D 0.3 0.4 0:00.01 app 1 root 20 0 160072 9416 6752 S 0.0 0.1 0:37.64 systemd 1896 root 20 0 0…
一.坏境准备 1.拓扑图 2.安装包 在第9节的基础上 在VM2上安装hping3依奈包 wget http://www.tcpdump.org/release/libpcap-1.9.0.tar.gz tar xf libpcap-1.9.0.tar.gz cd libpcap-1.9.0/ ./configure && make && make install [root@luoahong pcap]# pwd /root/libpcap-1.9.0/pcap [roo…
一.环境准备 1.在第6节的基础上安装dstat wget http://mirror.centos.org/centos/7/os/x86_64/Packages/dstat-0.7.2-12.el7.noarch.rpm rpm -ivh dstat-0.7.2-12.el7.noarch.rpm 2.故障现象 # 按下数字 1 切换到所有 CPU 的使用情况,观察一会儿按 Ctrl+C 结束 $ top top - 05:56:23 up 17 days, 16:45, 2 users,…
一.上节总结 专栏更新至今,四大基础模块的第三个模块——文件系统和磁盘 I/O 篇,我们就已经学完了.很开心你还没有掉队,仍然在积极学习思考和实践操作,并且热情地留言与讨论. 今天是性能优化的第四期.照例,我从 I/O 模块的留言中摘出了一些典型问题,作为今天的答疑内容,集中回复.同样的,为了便于你学习理解,它们并不是严格按照文章顺序排列的. 每个问题,我都附上了留言区提问的截屏.如果你需要回顾内容原文,可以扫描每个问题右下方的二维码查看. 二.问题 1:阻塞.非阻塞 I/O 与同步.异步 I/…
一.上节总结回顾 上一节,我们回顾了经典的 C10K 和 C1000K 问题.简单回顾一下,C10K 是指如何单机同时处理 1 万个请求(并发连接 1 万)的问题,而 C1000K 则是单机支持处理 100 万个请求(并发连接 100 万)的问题. I/O 模型的优化,是解决 C10K 问题的最佳良方.Linux 2.6 中引入的 epoll,完美解决了C10K 的问题,并一直沿用至今.今天的很多高性能网络方案,仍都基于 epoll. 自然,随着互联网技术的普及,催生出更高的性能需求.从 C10…
一.上节回顾 上一节,我们一起回顾了常见的文件系统和磁盘 I/O 性能指标,梳理了核心的 I/O 性能观测工具,最后还总结了快速分析 I/O 性能问题的思路. 虽然 I/O 的性能指标很多,相应的性能分析工具也有好几个,但理解了各种指标的含义后,你就会发现它们其实都有一定的关联. 顺着这些关系往下理解,你就会发现,掌握这些常用的瓶颈分析思路,其实并不难.找出了 I/O 的性能瓶颈后,下一步要做的就是优化了,也就是如何以最快的速度完成 I/O 操作,或者换个思路,减少甚至避免磁盘的 I/O 操作.…
一.上节回顾 专栏更新至今,四大基础模块的最后一个模块——网络篇,我们就已经学完了.很开心你还没有掉队,仍然在积极学习思考和实践操作,热情地留言和互动.还有不少同学分享了在实际生产环境中,碰到各种性能问题的分析思路和优化方法,这里也谢谢你们. 今天是性能优化答疑的第五期.照例,我从网络模块的留言中,摘出了一些典型问题,作为今天的答疑内容,集中回复.同样的,为了便于你学习理解,它们并不是严格按照文章顺序排列的. 每个问题,我都附上了留言区提问的截屏.如果你需要回顾内容原文,可以扫描每个问题右下方的…
一.上节回顾 上一节,我们探究了网络延迟增大问题的分析方法,并通过一个案例,掌握了如何用hping3.tcpdump.Wireshark.strace 等工具,来排查和定位问题的根源. 简单回顾一下,网络延迟是最核心的网络性能指标.由于网络传输.网络包处理等各种因素的影响,网络延迟不可避免.但过大的网络延迟,会直接影响用户的体验. 所以,在发现网络延迟增大的情况后,你可以先从路由.网络包的收发.网络包的处理,再到应用程序等,从各个层级分析网络延迟,等到找出网络延迟的来源层级后,再深入定位瓶颈所在…
一.上节回顾 上一节,我们了解了 NAT(网络地址转换)的原理,学会了如何排查 NAT 带来的性能问题,最后还总结了 NAT 性能优化的基本思路.我先带你简单回顾一下. NAT 基于 Linux 内核的连接跟踪机制,实现了 IP 地址及端口号重写的功能,主要被用来解决公网 IP 地址短缺的问题. 在分析 NAT 性能问题时,可以先从内核连接跟踪模块 conntrack 角度来分析,比如用systemtap.perf.netstat 等工具,以及 proc 文件系统中的内核选项,来分析网络协议栈的…
一.上节回顾 上一节,我们学了网络性能优化的几个思路,我先带你简单复习一下. 在优化网络的性能时,你可以结合 Linux 系统的网络协议栈和网络收发流程,然后从应用程序.套接字.传输层.网络层再到链路层等每个层次,进行逐层优化.上一期我们主要学习了应用程序和套接字的优化思路,比如: 在应用程序中,主要优化 I/O 模型.工作模型以及应用层的网络协议: 在套接字层中,主要优化套接字的缓冲区大小. 今天,我们顺着 TCP/IP 网络模型,继续向下,看看如何从传输层.网络层以及链路层中,优化 Linu…
一.上节回顾 上一期,我们一起梳理了,网络时不时丢包的分析定位和优化方法.先简单回顾一下.网络丢包,通常会带来严重的性能下降,特别是对 TCP 来说,丢包通常意味着网络拥塞和重传,进而会导致网络延迟增大以及吞吐量降低. 而分析丢包问题,还是用我们的老套路,从 Linux 网络收发的流程入手,结合 TCP/IP 协议栈的原理来逐层分析. 其实,在排查网络问题时,我们还经常碰到的一个问题,就是内核线程的 CPU 使用率很高.比如,在高并发的场景中,内核线程 ksoftirqd 的 CPU 使用率通常…
一.上节回顾 上一节,我们一起学习了怎么使用动态追踪来观察应用程序和内核的行为.先简单来回顾一下.所谓动态追踪,就是在系统或者应用程序还在正常运行的时候,通过内核中提供的探针,来动态追踪它们的行为,从而辅助排查出性能问题的瓶颈. 使用动态追踪,便可以在不修改代码也不重启服务的情况下,动态了解应用程序或者内核的行为.这对排查线上的问题.特别是不容易重现的问题尤其有效. 在 Linux 系统中,常见的动态追踪方法包括 ftrace.perf.eBPF/BCC 以及 SystemTap 等. 使用 p…
一.上节回顾 上一节,我们一起学习了,应用程序监控的基本思路,先简单回顾一下.应用程序的监控,可以分为指标监控和日志监控两大块. 指标监控,主要是对一定时间段内的性能指标进行测量,然后再通过时间序列的方式,进行处理.存储和告警. 而日志监控,则可以提供更详细的上下文信息,通常通过 ELK 技术栈,来进行收集.索引和图形化展示. 在跨多个不同应用的复杂业务场景中,你还可以构建全链路跟踪系统.这样,你就可以动态跟踪调用链中各个组件的性能,生成整个应用的调用拓扑图,从而加快定位复杂应用的性能问题. 不…
一.上节回顾 专栏更新至今,咱们专栏最后一部分——综合案例模块也要告一段落了.很高兴看到你没有掉队,仍然在积极学习思考.实践操作,并热情地分享你在实际环境中,遇到过的各种性能问题的分析思路以及优化方法. 今天是性能优化答疑的第六期.照例,我从综合案例模块的留言中,摘出了一些典型问题,作为今天的答疑内容,集中回复.为了便于你学习理解,它们并不是严格按照文章顺序排列的.每个问题,我都附上了留言区提问的截屏.如果你需要回顾内容原文,可以扫描每个问题右下方的二维码查看. 二.问题 1:容器冷启动性能分析…
一.内存的分配和回收 1.管理内存的过程中,也很容易发生各种各样的“事故”, 对应用程序来说,动态内存的分配和回收,是既核心又复杂的一的一个逻辑功能模块.管理内存的过程中,也很容易发生各种各样的“事故”, 比如,没正确回收分配后的内存,导致了泄漏.访问的是已分配内存边界外的地址,导致程序异常退出,等等. 你在程序中定义了一个局部变量,比如一个整数数组 int data[64] ,就定义了一个可以存储 64 个整数的内存段.由于这是一个局部变量,它会从内它会从内存空间的栈中分配内存 1.栈内存由系…
一.上节回顾 上一节,我带你一起梳理了,性能问题分析的一般步骤.先带你简单回顾一下. 我们可以从系统资源瓶颈和应用程序瓶颈,这两个角度来分析性能问题的根源. 从系统资源瓶颈的角度来说,USE 法是最为有效的方法,即从使用率.饱和度以及错误数这三个方面,来分析 CPU.内存.磁盘和文件系统 I/O.网络以及内核资源限制等各类软硬件资源.至于这些资源的分析方法,我也带你一起回顾了,咱们专栏前面几大模块的分析套路. 从应用程序瓶颈的角度来说,可以把性能问题的来源,分为资源瓶颈.依赖服务瓶颈以及应用自身…
一.上节回顾 上一节,我带你一起梳理了常见的性能优化思路,先简单回顾一下.我们可以从系统和应用程序两个角度,来进行性能优化. 从系统的角度来说,主要是对 CPU.内存.网络.磁盘 I/O 以及内核软件资源等进行优化. 而从应用程序的角度来说,主要是简化代码.降低 CPU 使用.减少网络请求和磁盘 I/O,并借助缓存.异步处理.多进程和多线程等,提高应用程序的吞吐能力. 性能优化最好逐步完善,动态进行.不要追求一步到位,而要首先保证能满足当前的性能要求. 性能优化通常意味着复杂度的提升,也意味着可…
一.性能优化方法论 不可中断进程案例 二.怎么评估性能优化的效果? 1.评估思路 2.几个为什么 1.为什么要选择不同维度的指标? 应用程序和系统资源是相辅相成的关系 2.性能优化的最终目的和结果? 好的应用程序 3.为什么必须要使用应用程序的指标,来评估性能优化的整体效果? 系统优化总是为应用程序服务的 4.为什么需要用系统资源的指标,来观察和分析瓶颈的来源 系统资源的使用情况是影响应用程序性能的根源 三.多个性能问题同时存在,要怎么选择? 四.有多种优化方法时,要如何选择? 五.系统优化 六…
一.上节回顾 上一节,我带你一起学习了网络性能的评估方法.简单回顾一下,Linux 网络基于 TCP/IP协议栈构建,而在协议栈的不同层,我们所关注的网络性能也不尽相同. 在应用层,我们关注的是应用程序的并发连接数.每秒请求数.处理延迟.错误数等,可以使用 wrk.Jmeter 等工具,模拟用户的负载,得到想要的测试结果. 而在传输层,我们关注的是 TCP.UDP 等传输层协议的工作状况,比如 TCP 连接数.TCP 重传.TCP 错误数等.此时,你可以使用 iperf.netperf 等,来测…
一.上节回顾 前几节,我们一起学习了文件系统和磁盘 I/O 的工作原理,以及相应的性能分析和优化方法.接下来,我们将进入下一个重要模块—— Linux 的网络子系统. 由于网络处理的流程最复杂,跟我们前面讲到的进程调度.中断处理.内存管理以及 I/O等都密不可分,所以,我把网络模块作为最后一个资源模块来讲解. 同 CPU.内存以及 I/O 一样,网络也是 Linux 系统最核心的功能.网络是一种把不同计算机或网络设备连接到一起的技术,它本质上是一种进程间通信方式,特别是跨系统的进程间通信,必须要…
一.上节回顾 前面内容,我们学习了 Linux 网络的基础原理以及性能观测方法.简单回顾一下,Linux网络基于 TCP/IP 模型,构建了其网络协议栈,把繁杂的网络功能划分为应用层.传输层.网络层.网络接口层等四个不同的层次,既解决了网络环境中设备异构的问题,也解耦了网络协议的复杂性. 基于 TCP/IP 模型,我们还梳理了 Linux 网络收发流程和相应的性能指标.在应用程序通过套接字接口发送或者接收网络包时,这些网络包都要经过协议栈的逐层处理.我们通常用带宽.吞吐.延迟.PPS 等来衡量网…
一.上节回顾 上一节,我们学习了 DNS 性能问题的分析和优化方法.简单回顾一下,DNS 可以提供域名和 IP 地址的映射关系,也是一种常用的全局负载均衡(GSLB)实现方法. 通常,需要暴露到公网的服务,都会绑定一个域名,既方便了人们记忆,也避免了后台服务 IP 地址的变更影响到用户. 不过要注意,DNS 解析受到各种网络状况的影响,性能可能不稳定.比如公网延迟增大,缓存过期导致要重新去上游服务器请求,或者流量高峰时 DNS 服务器性能不足等,都会导致 DNS 响应的延迟增大. 此时,可以借助…
一.上节回顾 上一节,我带你学习了 tcpdump 和 Wireshark 的使用方法,并通过几个案例,带你用这两个工具实际分析了网络的收发过程.碰到网络性能问题,不要忘记可以用 tcpdump 和Wireshark 这两个大杀器,抓取实际传输的网络包,排查潜在的性能问题. 今天,我们一起来看另外一个问题,怎么缓解 DDoS(Distributed Denial of Service)带来的性能下降问题. 二.DDoS 简介 1.DDoS 简介 DDoS 的前身是 DoS(Denail of S…