近来论文看了许多,但没多少时间总结下来.今天暂时记录一篇比较旧的论文,选择理由是 Discriminative features. 做图像说白了就是希望有足够有判别性的特征,这样在分类或者匹配.检索的时候才能有较好的精度. 一. 综述 这篇论文思想很简单.如何称之为有判别性的特征?作者利用编码器的思想,对于同一ID的图形的特征,如果编码后仍可以较好的解码为同一ID的特征,那么我们就说这个特征有判别力.这里有个点值得注意:编码器是针对图像特征,非图像本身.好的特征表示大概有2个衡量标准:可以很好的…
[arXiv 1710.03144]Island Loss for Learning Discriminative Features in Facial Expression ABSTRACT 作者在CenterLoss的基础上,提出了一个新的Loss,在关注类别的类内距离的同时,优化类间距离,使得每个类别拥有更大的margin,从而迫使网络能够学习到更具判别性的特征. 当前问题 在环境不可控(光照,姿态,遮挡,人物状态)等条件下,不同表情间的类间距离往往会大于类内距离.同时因为高的类内距离,同…
from:http://analyticsbot.ml/2016/10/machine-learning-pre-processing-features/ Machine Learning : Pre-processing features October 21, 2016 I am participating in this Kaggle competition. It is a prediction problem contest. The problem statement is: How…
Exercise:Learning color features with Sparse Autoencoders 习题链接:Exercise:Learning color features with Sparse Autoencoders sparseAutoencoderLinearCost.m function [cost,grad,features] = sparseAutoencoderLinearCost(theta, visibleSize, hiddenSize, ... lam…
承接上上篇博客,在其基础上,加入了Wasserstein distance和correlation prior .其他相关工作.网络细节(maxout operator).训练方式和数据处理等基本和前文一致.以下是这两点改进的大概: Wasserstein convolutional neural network(WCNN)的低级层利用容易得到的大量VIS光谱训练,高级层划分为3部分:the NIR layer, the VIS layer and the NIR-VIS shared laye…
1.主要完成的任务是能够将英文转译为法文,使用了一个encoder-decoder模型,在encoder的RNN模型中是将序列转化为一个向量.在decoder中是将向量转化为输出序列,使用encoder-decoder能够加入词语与词语之间的顺序信息. 2.另一个任务是将序列表达为一个向量,利用向量能够清楚的看出那些语义上相近的词聚集在一起. 3.在设计RNN的隐藏层时,在读入或产生序列加入了reset和update门,可以选择丢掉记忆信息和更新记忆信息,得到了更有意义的结果. 4.两个RNN网…
中心思想 继Relation Network实现可学习的nms之后,MSRA的大佬们觉得目标检测器依然不够fully learnable,这篇文章类似之前的Deformable ROI Pooling,主要在ROI特征的组织上做文章,文章总结了现有的各种ROI Pooling变体,提出了一个统一的数学表达式,藉由这个表达式,提出完全可学习,无人工设计的Region特征,据Han Hu大佬的讲座所说,这篇文章现在只是提出了一种行得通的方案,还没有研究清楚,性能比Deformable Conv那篇文…
相关工作: 将R-CNN推广到RGB-D图像,引入一种新的编码方式来捕获图像中像素的地心姿态,并且这种新的编码方式比单纯使用深度通道有了明显的改进. 我们建议在每个像素上用三个通道编码深度图像:水平视差.离地高度.像素局部表面法向量和重力方向的夹角(HHA,horizontal disparity, height above ground, and the angle the pixel`s, local surface normal makes with the inferred gravit…
依赖项: Python 3.4.3 tensorflow>1.0.0, tqdm, cv2, exifread, skimage, glob 1.安装tensorflow:https://www.tensorflow.org/install/pip?lang=python3 1.安装python开发环境 sudo apt update sudo apt install python3-dev python3-pip sudo pip3 install -U virtualenv 2.创建虚拟环境…