python机器学习-sklearn挖掘乳腺癌细胞( 博主亲自录制) 网易云观看地址 https://study.163.com/course/introduction.htm?courseId=1005269003&utm_campaign=commission&utm_source=cp-400000000398149&utm_medium=share 乳腺癌细胞和正常细胞是有显著区别的 癌细胞半径更大,形状更加不规则,凹凸不平.我们可以用科学手段来区分正常细胞和癌细胞吗?答案…
python机器学习-sklearn挖掘乳腺癌细胞( 博主亲自录制) 网易云观看地址 https://study.163.com/course/introduction.htm?courseId=1005269003&utm_campaign=commission&utm_source=cp-400000000398149&utm_medium=share  模型验证 分类器好坏验证,模型建立好后,不是万事大吉,需要进行crossvalidation, AUC,GINi,KS,Ga…
python机器学习-sklearn挖掘乳腺癌细胞( 博主亲自录制) 网易云观看地址 https://study.163.com/course/introduction.htm?courseId=1005269003&utm_campaign=commission&utm_source=cp-400000000398149&utm_medium=share 模型调参 调参是一门黑箱技术,需要经验丰富的机器学习工程师才能做到.幸运的是sklearn有调参的包,入门级学者也可尝试调参.…
python机器学习-sklearn挖掘乳腺癌细胞( 博主亲自录制) 网易云观看地址 https://study.163.com/course/introduction.htm?courseId=1005269003&utm_campaign=commission&utm_source=cp-400000000398149&utm_medium=share sklearn编程环境搭建 (1)下载anaconda 首先下载anaconda,这款框架比Python官网的编辑器更好用,下…
python机器学习-sklearn挖掘乳腺癌细胞( 博主亲自录制) 网易云观看地址 https://study.163.com/course/introduction.htm?courseId=1005269003&utm_campaign=commission&utm_source=cp-400000000398149&utm_medium=share 前言 警钟长鸣!癌症离我们远吗?<我不是药神>催人泪下,笔者在此揭露真相,癌症不是小概率疾病,癌症就在身边.癌症早…
1.介绍 Ridge 回归通过对系数的大小施加惩罚来解决 普通最小二乘法 的一些问题. 岭系数最小化的是带罚项的残差平方和, 其中,α≥0α≥0 是控制系数收缩量的复杂性参数: αα 的值越大,收缩量越大,这样系数对共线性的鲁棒性也更强. 2.参数 alpha:{float,array-like},shape(n_targets) 正则化强度; 必须是正浮点数. 正则化改善了问题的条件并减少了估计的方差. 较大的值指定较强的正则化. Alpha对应于其他线性模型(如Logistic回归或Line…
决策树 熵的定义 如果一个随机变量X的可能取值为X={x1,x2,..,xk},其概率分布为P(X=x)=pi(i=1,2,...,n),则随机变量X的熵定义为\(H(x) = -\sum{p(x)logp(x)}=\sum{p(x)log{\frac{1}{p(x)}}}\).需要注意的是,熵越大,随机变量的不确定性就越大. 当n = 2的时候,\(H(p)=-plogp-(1-p)log(1-p)\)也就是交叉熵的损失函数. 条件熵 条件熵主要是用来计算,在莫一列数据X选中的条件下,其标签Y…
网上有很多关于sklearn的学习教程,大部分都是简单的讲清楚某一方面,其实最好的教程就是官方文档. 官方文档地址:https://scikit-learn.org/stable/ (可是官方文档非常详细,同时许多人对官方文档的理解和结构上都不能很好地把握,我也打算好好学习sklearn,这可能是机器学习的神器),下面先简单介绍一下sklearn. 自2007年发布以来,scikit-learn已经成为Python重要的机器学习库了,scikit-learn简称sklearn,支持包括分类,回归…
python机器学习实战(三) 版权声明:本文为博主原创文章,转载请指明转载地址 www.cnblogs.com/fydeblog/p/7277205.html  前言 这篇notebook是关于机器学习中基于概率论的分类方法--朴素贝叶斯,内容包括朴素贝叶斯分类器,垃圾邮件的分类,解析RSS源数据以及用朴素贝叶斯来分析不同地区的态度. 操作系统:ubuntu14.04 运行环境:anaconda-python2.7-jupyter notebook 参考书籍:机器学习实战和源码,机器学习(周志…
Python机器学习库sklearn的安装 scikit-learn是Python的一个开源机器学习模块,它建立在NumPy,SciPy和matplotlib模块之上能够为用户提供各种机器学习算法接口,可以让用户简单.高效地进行数据挖掘和数据分析. Ubuntu14.04系统上安装 安装numpy 首选需要安装numpy: pip install numpy 安装scipy $ sudo apt-get install libblas-dev liblapack-dev libatlas-bas…