Generative Adversarial Text to Image Synthesis ICML 2016  摘要:本文将文本和图像练习起来,根据文本生成图像,结合 CNN 和 GAN 来有效的进行无监督学习. Attribute Representation: 是一个非常具有意思的方向.由图像到文本,可以看做是一个识别问题:从文本到图像,则不是那么简单. 因为需要解决这两个小问题: 1. learning a text feature representation that captur…
NDSS https://arxiv.org/abs/1812.05271 摘要中的创新点确实是对抗攻击中值得考虑的点: 1. effective 2. evasive    recognized by human readers 3. efficient 在IMDB数据集上取得100%的成功率. 最后有讨论可能的防御机制,可以重点看下能不能做这相关的工作. TEXTBUGGER: 白盒:通过雅可比矩阵找到最重要的单词. https://jingyan.baidu.com/article/cb5…
Adit Deshpande CS Undergrad at UCLA ('19) Blog About Resume Deep Learning Research Review Week 1: Generative Adversarial Nets Starting this week, I’ll be doing a new series called Deep Learning Research Review. Every couple weeks or so, I’ll be summa…
本文来自<Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks>,时间线为2017年3月.本文算是GAN的一个很大的应用里程点,其可以用在风格迁移,目标形变,季节变换,相片增强等等. 1 引言 如图1所示,本文提出的方法可以进行图像风格的变化,色调的变化等等.该问题可以看成是image-to-image变换,将给定场景下的一张图片表示\(x\)变换到另一个图片\(y\),例如:灰度图片到颜…
本文来自<Image-to-Image Translation with Conditional Adversarial Networks>,是Phillip Isola与朱俊彦等人的作品,时间线为2016年11月. 作者调研了条件对抗网络,将其作为一种通用的解决image-to-image变换方法.这些网络不止用来学习从输入图像到输出图像的映射,同时学习一个loss函数去训练这个映射.这让传统需要各种不同loss函数的问题变成了可以采用统一方法来解决成为可能.作者发现这种方法在基于标签map…
StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks  本文将利用 GANs 进行高质量图像生成,分为两个阶段进行,coarse to fine 的过程.据说可以生成 256*256 的高清图像. 基于文本生成对应图像的工作已经有了,比如说 Attribute2Image,以及 最开始的基于文本生成图像的文章等等. Stacked Generated Adver…
Face Aging with Conditional Generative Adversarial Network 论文笔记 2017.02.28  Motivation: 本文是要根据最新的条件产生式对抗玩网络(CGANs)来完成,人类老年照片的估计. 主要是做了一下两个事情: 1. 根据年龄阶段,进行照片的老年估计,用 acGAN 网络来完成: 2. 提出一种 隐层变量优化算法(latent vector optimization approach),允许 acGAN 可以重构输入人脸图像…
AttnGAN: Fine-Grained Text to Image Generation with Attentional Generative Adversarial Networks 笔记 这篇文章的任务是 "根据文本描述" 生成图像.以往的常规做法是将整个句子编码为condition向量,与随机采样的高斯噪音\(z\)进行拼接,经过卷积神经网络(GAN,变分自编码等)来上采样生成图像.这篇文章发现的问题是:仅通过编码整个句子去生成图像会忽略掉一些细粒度的信息,而这些细粒度的信…
SeqGAN: Sequence generative adversarial nets with policy gradient  AAAI-2017 Introduction :  产生序列模拟数据来模仿 real data 是无监督学习中非常重要的课题之一.最近, RNN/LSTM 框架在文本生成上取得了非常好的效果,最常见的训练方法是:给定上一个 token,推测当前 token 的最大化似然概率.但是最大似然方法容易受到 “exposure bias” 的干扰:the model ge…
论文题目:<Generative Adversarial Networks for Hyperspectral Image Classification> 论文作者:Lin Zhu, Yushi Chen, Member, IEEE, Pedram Ghamisi, Member, IEEE, and Jó n Atli Benediktsson, Fellow, IEEE 论文发表时间:2018 网络简称:3D-GAN 发表期刊:IEEE Transactions on Geoscience…