首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
基于PaddleOCR的多视角集装箱箱号检测识别
】的更多相关文章
基于Python实现的死链接自动化检测工具
基于Python实现的死链接自动化检测工具 by:授客 QQ:1033553122 测试环境: win7 python 3.3.2 chardet 2.3.0 脚本作用: 检测系统中访问异常(请求返回code值非200)的链接 使用方法: 1. 配置 编辑deadLinkDetection\conf\init.conf 配置项如下 protocol:协议,比如https, http host:主机.域名,如192.168.1.3 port:端口号,比如 80, 8080, 443 usern…
采用太平洋AI集装箱箱号识别接口实现集装箱箱号识别
识别 示例图片 1 太平洋AI集装箱箱号识别接口(文档下方有详细操作指南) 1.1 接口一:提交base64格式的图片 地址:http://218.1.125.60:88/container_num_detect/container_num_detect_base64/ 提交方式:post 接口参数: {'img':img_base64} 返回值: { "msg":"ok", 状态信息 "code":"200&…
AIOps探索:基于VAE模型的周期性KPI异常检测方法——VAE异常检测
AIOps探索:基于VAE模型的周期性KPI异常检测方法 from:jinjinlin.com 作者:林锦进 前言 在智能运维领域中,由于缺少异常样本,有监督方法的使用场景受限.因此,如何利用无监督方法对海量KPI进行异常检测是我们在智能运维领域探索的方向之一.最近学习了清华裴丹团队发表在WWW 2018会议上提出利用VAE模型进行周期性KPI无监督异常检测的论文:<Unsupervised Anomaly Detection via Variational Auto-Encoder for…
伪基站,卒于5G——本质上是基于网络和UE辅助的伪基站检测,就是将相邻基站的CI、信号强度等信息通过测量报告上报给网络,网络结合网络拓扑、配置信息等相关数据,对所有数据进行综合分析,确认在某个区域中是否存在伪基站
伪基站,卒于5G from:https://www.huxiu.com/article/251252.html?h_s=h8 2018-07-05 21:58收藏27评论6社交通讯 本文来自微信公众号:网优雇佣军(hr_opt),虎嗅获授权发表,题图来自:pixabay.com. 伪基站是2G时代的产物,通过伪装运营商的基站,向用户手机发送广告推销.诈骗.钓鱼网站等信息,侵犯公民隐私,危害人身财产安全,扰乱社会秩序. 2G时代,由于GSM只有单向鉴权加密,手机无法确认网络的合法性,导致伪…
基于Haar特征的Adaboost级联人脸检测分类器
基于Haar特征的Adaboost级联人脸检测分类器基于Haar特征的Adaboost级联人脸检测分类器,简称haar分类器.通过这个算法的名字,我们可以看到这个算法其实包含了几个关键点:Haar特征.Adaboost.级联.理解了这三个词对该算法基本就掌握了.1 算法要点Haar分类器 = Haar-like特征 + 积分图方法 + AdaBoost +级联:Haar分类器算法的要点如下:a) 使用Haar-like特征做检测.b) 使用积分图(Inte…
基于深度学习的安卓恶意应用检测----------android manfest.xml + run time opcode, use 深度置信网络(DBN)
基于深度学习的安卓恶意应用检测 from:http://www.xml-data.org/JSJYY/2017-6-1650.htm 苏志达, 祝跃飞, 刘龙 摘要: 针对传统安卓恶意程序检测技术检测准确率低,对采用了重打包和代码混淆等技术的安卓恶意程序无法成功识别等问题,设计并实现了DeepDroid算法.首先,提取安卓应用程序的静态特征和动态特征,结合静态特征和动态特征生成应用程序的特征向量:然后,使用深度学习算法中的深度置信网络(DBN)对收集到的训练集进行训练,生成深度学习网络:…
照片美妆---基于Haar特征的Adaboost级联人脸检测分类器
原文:照片美妆---基于Haar特征的Adaboost级联人脸检测分类器 本文转载自张雨石http://blog.csdn.net/stdcoutzyx/article/details/34842233 基于Haar特征的Adaboost级联人脸检测分类器 基于Haar特征的Adaboost级联人脸检测分类器,简称haar分类器.通过这个算法的名字,我们可以看到这个算法其实包含了几个关键点:Haar特征.Adaboost.级联.理解了这三个词对该算法基本就掌握了. 1 算法要点 H…
CVPR2020|3D-VID:基于LiDar Video信息的3D目标检测框架
作者:蒋天园 Date:2020-04-18 来源:3D-VID:基于LiDar Video信息的3D目标检测框架|CVPR2020 Brief paper地址:https://arxiv.org/pdf/2004.01389.pdf code地址:https://github.com/yinjunbo/3DVID 这是一篇来自北理工和百度合作的文章,目前还未开源,只有项目地址,2020年3月份放置在arxiv上,已经被CVPR2020接收:从标题我们猜测该文采用的时空信息将多帧的点云信息融合做…
[OpenCV]基于特征匹配的实时平面目标检测算法
一直想基于传统图像匹配方式做一个融合Demo,也算是对上个阶段学习的一个总结. 由此,便采购了一个摄像头,在此基础上做了实时检测平面目标的特征匹配算法. 代码如下: # coding: utf-8 ''' @author: linxu @contact: 17746071609@163.com @time: 2021-07-26 上午11:54 @desc: 基于特征匹配的实时平面目标检测算法 @Ref: https://docs.opencv.org/3.0-beta/doc/py_tutor…
Atitit 图像处理--图像分类 模式识别 肤色检测识别原理 与attilax的实践总结
Atitit 图像处理--图像分类 模式识别 肤色检测识别原理 与attilax的实践总结 1.1. 五中滤镜的分别效果..1 1.2. 基于肤色的图片分类1 1.3. 性能提升2 1.4. --code2 1.1. 五中滤镜的分别效果.. /AtiPlatf_cms/src/com/attilax/clr/skinfltAll.java 1.2. 基于肤色的图片分类 /AtiPlatf_cms/src/com/attilax/clr/moveBySkinLow.java 生成所有图片的肤色百分…