高并发环境下全局id生成策略】的更多相关文章

解决方案: 基于Redis的全局id生成策略:(推荐此方法) 基于雪花算法的全局id生成: https://www.cnblogs.com/kobe-qi/p/8761690.html 基于zookeeper的全局id生成: https://www.iyunv.com/thread-660410-1-1.html…
在大型互联网应用中,随着用户数的增加,为了提高应用的性能,我们经常需要对数据库进行分库分表操作.在单表时代,我们可以完全依赖于数据库的自增ID来唯一标识一个用户或数据对象.但是当我们对数据库进行了分库分表后,就不能依赖于每个表的自增ID来全局唯一标识这些数据了.因此,我们需要提供一个全局唯一的ID号生成策略来支持分库分表的环境.下面来介绍两种非常优秀的解决方案: 1. 数据库自增ID——来自Flicker的解决方案 因为MySQL本身支持auto_increment操作,很自然地,我们会想到借助…
在大型互联网应用中,随着用户数的增加,为了提高应用的性能,我们经常需要对数据库进行分库分表操作.在单表时代,我们可以完全依赖于数据库的自增ID来唯一标识一个用户或数据对象.但是当我们对数据库进行了分库分表后,就不能依赖于每个表的自增ID来全局唯一标识这些数据了.因此,我们需要提供一个全局唯一的ID号生成策略来支持分库分表的环境.下面来介绍两种非常优秀的解决方案: 1. 数据库自增ID--来自Flicker的解决方案 因为MySQL本身支持auto_increment操作,很自然地,我们会想到借助…
转载一篇博客,里面有很多的知识和思想值得我们去思考. —————————————————————————————————————————————————————————————————————— 在大型互联网应用中,随着用户数的增加,为了提高应用的性能,我们经常需要对数据库进行分库分表操作.在单表时代,我们可以完全依赖于数据库的自增ID来唯一标识一个用户或数据对象.但是当我们对数据库进行了分库分表后,就不能依赖于每个表的自增ID来全局唯一标识这些数据了.因此,我们需要提供一个全局唯一的ID号生成…
分布式环境下的id生成方法   前几天研究数据库分表分库的问题,其中有一个关键的地方就是生成唯一键的问题,假如数据表有1亿条数据,而且还在不断的增加,这里我们就需要考虑到分表分库,假设我们采用Hash或者是用户取模求余的方法将这个表拆分成10个表,每个表的结构相同,其中有一个主键id,那么10个表中的id需要唯一不同,在单表的时候,使用数据表自增长是没有问题的.当分成10个表后,就无法用到数据库自增长了. 当到这里的时候突然发现oracle数据库的序列真是好东西,在刚刚接触的时候还很郁闷这种设计…
原文:http://blog.csdn.net/heyewu4107/article/details/71009712 高并发场景系列(一) 利用redis实现分布式事务锁,解决高并发环境下减库存 问题描述:某电商平台,首发一款新品手机,每人限购2台,预计会有10W的并发,在该情况下,如果扣减库存,保证不会超卖 方案一 利用数据库锁机制,对记录进行锁定,再进行操作 SELECT * from goods where ID =1 for update; UPDATE goods set stock…
利用redis实现分布式事务锁,解决高并发环境下库存扣减   问题描述: 某电商平台,首发一款新品手机,每人限购2台,预计会有10W的并发,在该情况下,如果扣减库存,保证不会超卖 解决方案一 利用数据库锁机制,对记录进行锁定,再进行操作 select * from goods where id =1 for update ; update goods set count = count - 1 where id= 1; 利用排它锁将并行转化为串行操作,但该方案的性能和用户体验较差 解决方案二 利…
写在前面 周末,跟阿里的一个朋友(去年晋升为P9了)聊了很久,聊的内容几乎全是技术,当然了,两个技术男聊得最多的话题当然就是技术了.从基础到架构,从算法到AI,无所不谈.中间又穿插着不少天马行空的想象,虽然现在看起来不太实际,但是随着技术的进步,相信五年.十年之后都会实现的. 不知道是谁提起了在高并发环境下如何构建缓存服务,结果一路停不下来了!! 缓存特征 (1)命中率:命中数/(命中数+没有命中数) (2)最大元素(空间):代表缓存中可以存放的最大元素的数量,一旦缓存中元素的数量超过这个值,或…
1.为什么MQ能解决高并发环境下的消息堆积问题? MQ消息如果堆积,消费者不会立马消费所有的消息,不具有实时性,所以可以解决高并发的问题. 性能比较好的消息中间件:Kafka.RabbitMQ,RocketMQ. 2.什么情况下会产生消息丢失的现象? 消息队列满了的情况下. 3.如何解决消息丢失的问题? (1)生产者可以采用重试机制.因为消费者会不停的消费消息,可以重试将消息放入队列. 如果还是不行,可以将消息记录到数据库,后期做补偿.(不太推荐,不方便) (2)死信队列,可以理解为备胎.(推荐…
写在前面 Tomcat作为最常用的Java Web服务器,随着并发量越来越高,Tomcat的性能会急剧下降,那有没有什么方法来优化Tomcat在高并发环境下的性能呢? Tomcat运行模式 Tomcat的运行模式有3种. 1.bio模式 默认的模式,性能非常低下,没有经过任何优化处理和支持. 2.nio模式 利用java的异步io护理技术,noblocking IO技术.要想运行在该模式下,则直接修改server.xml里的Connector节点,修改protocol为如下配置. protoco…