池化层 Pooling Layer】的更多相关文章

1.池化层的作用 在卷积神经网络中,卷积层之间往往会加上一个池化层.池化层可以非常有效地缩小参数矩阵的尺寸,从而减少最后全连层中的参数数量.使用池化层即可以加快计算速度也有防止过拟合的作用. 2.为什么max pooling要更常用? 通常来讲,max-pooling的效果更好,虽然max-pooling和average-pooling都对数据做了下采样,但是max-pooling感觉更像是做了特征选择,选出了分类辨识度更好的特征,提供了非线性,根据相关理论,特征提取的误差主要来自两个方面:(1…
在卷积神经网络中,我们经常会碰到池化操作,而池化层往往在卷积层后面,通过池化来降低卷积层输出的特征向量,同时改善结果(不易出现过拟合).为什么可以通过降低维度呢? 因为图像具有一种“静态性”的属性,这也就意味着在一个图像区域有用的特征极有可能在另一个区域同样适用.因此,为了描述大的图像,一个很自然的想法就是对不同位置的特征进行聚合统计,例如,人们可以计算图像一个区域上的某个特定特征的平均值 (或最大值)来代 表这个区域的特征. 1.  一般池化(General Pooling) 池化作用于图像中…
from mxnet import autograd,nd from mxnet import gluon,init from mxnet.gluon import nn,loss as gloss from mxnet.gluon import data as gdata def pool2d(X, pool_size, mode='max'): p_h, p_w = pool_size Y = nd.zeros((X.shape[0]-p_h+1,X.shape[1] - p_w+1)) f…
摘要:池化层的主要目的是降维,通过滤波器映射区域内取最大值.平均值等操作. 均值池化:tf.nn.avg_pool(input,ksize,strides,padding) 最大池化:tf.nn.max_pool(input,ksize,strides,padding) input:通常情况下是卷积层输出的featuremap,shape=[batch,height,width,channels]              假定这个矩阵就是卷积层输出的featuremap(2通道输出)  他的s…
原文地址:https://blog.csdn.net/CVSvsvsvsvs/article/details/90477062 池化层作用机理我们以最简单的最常用的max pooling最大池化层为例,对池化层作用机理进行探究.其他池化层的作用机理也大致适用这一机理,在这里就不加入讨论. 图片和以下部分内容来自 CS231n 从上面左图可以看到,使用了pool操作其实就是降低图片的空间尺寸.右图使用一个 2 × 2的 池化核(filter),以2为步长(stride),对图片进行max pool…
池化层定义在 tensorflow/python/layers/pooling.py. 有最大值池化和均值池化. 1.tf.layers.max_pooling2d max_pooling2d( inputs, pool_size, strides, padding='valid', data_format='channels_last', name=None ) inputs: 进行池化的数据. pool_size: 池化的核大小(pool_height, pool_width),如[3,3]…
池化层(Pooling layers) 除了卷积层,卷积网络也经常使用池化层来缩减模型的大小,提高计算速度,同时提高所提取特征的鲁棒性,我们来看一下.   先举一个池化层的例子,然后我们再讨论池化层的必要性.假如输入是一个4×4矩阵,用到的池化类型是最大池化(max pooling).执行最大池化的树池是一个2×2矩阵.执行过程非常简单,把4×4的输入拆分成不同的区域,我把这个区域用不同颜色来标记.对于2×2的输出,输出的每个元素都是其对应颜色区域中的最大元素值. 左上区域的最大值是9,右上区域…
来看上图的简单CNN: 从39x39x3的原始图像 不填充且步长为1的情况下经过3x3的10个filter卷积后 得到了 37x37x10的数据 不填充且步长为2的情况下经过5x5的20个filter卷积后 得到了 17x17x20的数据 不填充且步长为2的情况下经过5x5的40个filter卷积后 得到了 7x7x40的最终结果 将7x7x40的卷积层全部展开作为输入特征,建立一个输入层单元数为1960的神经网络即可 卷积神经网络常见的结构: 1.Conv卷积层如上图所见 2.Pool池化层…
代码来源:https://github.com/eriklindernoren/ML-From-Scratch 卷积神经网络中卷积层Conv2D(带stride.padding)的具体实现:https://www.cnblogs.com/xiximayou/p/12706576.html 激活函数的实现(sigmoid.softmax.tanh.relu.leakyrelu.elu.selu.softplus):https://www.cnblogs.com/xiximayou/p/127130…
本章代码:https://github.com/zhangxiann/PyTorch_Practice/blob/master/lesson3/nn_layers_others.py 这篇文章主要介绍了 PyTorch 中的池化层.线性层和激活函数层. 池化层 池化的作用则体现在降采样:保留显著特征.降低特征维度,增大 kernel 的感受野. 另外一点值得注意:pooling 也可以提供一些旋转不变性. 池化层可对提取到的特征信息进行降维,一方面使特征图变小,简化网络计算复杂度并在一定程度上避…