目标反射回波检测算法及其FPGA实现之三: 平方.积分电路及算法的顶层实现 前段时间,接触了一个声呐目标反射回波检测的项目.声呐接收机要实现的核心功能是在含有大量噪声的反射回波中,识别出发射机发出的激励信号的回波.我会分几篇文章分享这个基于FPGA的回波识别算法的开发过程和原码,欢迎大家不吝赐教.以下原创内容欢迎网友转载,但请注明出处: https://www.cnblogs.com/helesheng. 在本系列博文的第一篇中,根据仿真结果,我认为采用“反射回波和激励信号互相关”的结果来计算目…
目标反射回波检测算法及其FPGA实现之二: 互相关/卷积/FIR电路的实现 前段时间,接触了一个声呐目标反射回波检测的项目.声呐接收机要实现的核心功能是在含有大量噪声的反射回波中,识别出发射机发出的激励信号的回波.我会分几篇文章分享这个基于FPGA的回波识别算法的开发过程和原码,欢迎大家不吝赐教.以下原创内容欢迎网友转载,但请注明出处: https://www.cnblogs.com/helesheng. 在本系列博文的第一篇中,根据仿真结果,我认为采用“反射回波和激励信号互相关”来计算目标距离…
基于FPGA的目标反射回波检测算法及其实现(准备篇) :用Verilog-HDL状态机控制硬件接口 前段时间,开发了一个简单的目标反射回波信号识别算法,我会分几篇文章分享这个基于FPGA的回波识别算法的开发过程和原码,欢迎大家不吝赐教.“工欲善其事,必先利其器”,调试FPGA上的数字信号处理算法,最直接的办法是进行行为仿真(前仿).但有时想通过testbench产生验证算法所需的特定激励信号,并不是一件容易的事情.往往导致通过行为仿真验证/调试FPGA数字信号处理算法的效率低下. 随着任意信号发…
目标反射回波检测算法及其FPGA实现之一:算法概述 前段时间,接触了一个声呐目标反射回波检测的项目.声呐接收机要实现的核心功能是在含有大量噪声的反射回波中,识别出发射机发出的激励信号的回波.我会分几篇文章分享这个基于FPGA的回波识别算法的开发过程和原码,欢迎大家不吝赐教.以下原创内容欢迎网友转载,但请注明出处: https://www.cnblogs.com/helesheng.本文首先简要介绍基于FPGA的互相关反射回波检测算法的主要设计思路. 声呐测距的原理非常简单,如下图所示,抹香鲸在水…
在我们使用scvmm2012的时候,经常会看到群集状态变成了这样 点开看属性后,我们发现是这样 . 发现了吗?Over-committed,如果翻译过来就是资源过载,或者说资源过量使用了,那么这个状态是怎么出现的呢? 出现这个状态以后会出现什么问题?怎么解决? 今天我们就谈一谈在SCVMM中over-committed的算法,知道SCVMM是如何确认一个群集是否过载后,就知道如何避免它,带来种种问题也就能解决了 part 1. 算法概述 SCVMM 2012 群集的过载检查主要是用来确认整个群集…
南大周志华老师在2010年提出一个异常检测算法Isolation Forest,在工业界很实用,算法效果好,时间效率高,能有效处理高维数据和海量数据,这里对这个算法进行简要总结. iTree 提到森林,自然少不了树,毕竟森林都是由树构成的,看Isolation Forest(简称iForest)前,我们先来看看Isolation Tree(简称iTree)是怎么构成的,iTree是一种随机二叉树,每个节点要么有两个女儿,要么就是叶子节点,一个孩子都没有.给定一堆数据集D,这里D的所有属性都是连续…
Harris角点检测算法优化 一.综述 用 Harris 算法进行检测,有三点不足:(1 )该算法不具有尺度不变性:(2 )该算法提取的角点是像素级的:(3 )该算法检测时间不是很令人满意. 基于以上认识,我主要针对第(3 )点对Harris 角点检测算法提出了改进. 二.改进 Harris 算法原理 在介绍我的方法之前,我先提出如下概念:图像区域像素的相似度.我们知道, Harris 角点检测是基于图像像素灰度值变化梯度的, 灰度值图像的角点附近,是其像素灰度值变化非常大的区域,其梯度也非常大…
Twritters的异常检测算法(Anomaly Detection)做的比较好,Seasonal Hybrid ESD算法是先用STL把序列分解,考察残差项.假定这一项符合正态分布,然后就可以用Generalized ESD提取离群点. 目标是检测出时间序列数据集的异常点,如图所示,蓝色线是时间序列数据集,红色是圈是异常点. R语言实现如下,一些依赖包需要install.packages("")或者手动在cran社区下载(注意依赖包的下载).本人github下载源码. 1 主函数是,…
原文:http://blog.csdn.net/zouxy09/article/details/9622285 转自:http://blog.csdn.net/app_12062011/article/details/51866319 因为监控发展的需求,目前前景检测的研究还是很多的,也出现了很多新的方法和思路.个人了解的大概概括为以下一些: 帧差.背景减除(GMM.CodeBook. SOBS. SACON. VIBE. W4.多帧平均……).光流(稀疏光流.稠密光流).运动竞争(Motion…
光照模型(Shading Model)在很多论文中得到了广泛的应用,如robust and illumination invariant change detection based on linear dependence for surveillance application.Making background subtraction robust to sudden illumination Changes以及Illuminatin independent change detectio…
在上一篇里http://www.cnblogs.com/sepeng/p/4045593.html <bresenham算法的FPGA的实现1>已经做了一个整体框架的布局,但是那个程序只是支持|k|<1.要想全屏支持,就还需要对这个程序做修改,觉得自己的修改方式很繁琐,期望大家的指点,有高质量的code出现.算法的原理部分在上一篇中已经给出 /* date:2014/10/23 version : QuartusII + de1-soc cyclone V designer : peng…
AdaBoost算法是一种自适应的Boosting算法,基本思想是选取若干弱分类器,组合成强分类器.根据人脸的灰度分布特征,AdaBoost选用了Haar特征[38].AdaBoost分类器的构造过程如图2-4所示. 图2-4  Adaboost分类器的构造过程 1)Haar-like矩形特征 Haar-like矩形特征是根据图像的区域灰度对比特性进行设计的,常用的Haar-like特征[39]如图2-5所示,Haar-like特征值定义为白色区域像素值之和与黑色区域像素值之和的差值. 图2-5…
本文根据论文:Fuzzy Integral for Moving Object Detection-FUZZ-IEEE_2008的内容及自己的理解而成,如果想了解更多细节,请参考原文.在背景建模中,我们对于像素的分类总是采用非此即彼的方式来分,即该像素要么是背景要么是前景.然而,由于噪声.光照变化以及阴影等特殊情况导致像素会存在错误,即像素存在一定的不确定性.为了处理这种不确定性,本文提出了基于模型Choquet积分的目标检测算法. 首先,我们来看看这个算法的基本流程,如下图所示. 从上图可以看…
词袋模型是一种文本表征方法,它应用到计算机视觉领域就称之为BoF(bag of features),通过BoF可以把一张图片表示成一个向量.DBoW2是一个视觉词袋库,它提供了生成和使用词典的接口,但它并不等同于slam中的回环检测. 回环检测属于slam前端,也是vslam三大模块(视觉里程计,回环,优化)之一.回环检测的主要目的是确认当前位置是否曾经到达过.它接收一段图片序列,然后绘制拓扑地图,故又称之为拓扑制图.基于BoF的回环检测是目前比较流行的回环解决方案,诸如IAB-MAP,FAB-…
前面描述角点检测的时候说到,角点其实也是一种图像特征点,对于一张图像来说,特征点分为三种形式包括边缘,焦点和斑点,在OPENCV中,加上角点检测,总共提供了以下的图像特征点检测方法 FAST SURF ORB BRISK KAZE AKAZE MESR GFTT good feature to tack Bob斑点 STAR AGAST 接下来分别讲述这是一种图像特征检测算法,但是首先,需要了解OPENCV的一种数据结构, KeyPoint结构,该结构的头文件定义如下: class KeyPoi…
iForest (Isolation Forest)是由Liu et al. [1] 提出来的基于二叉树的ensemble异常检测算法,具有效果好.训练快(线性复杂度)等特点. 1. 前言 iForest为聚类算法,不需要标记数据训练.首先给出几个定义: 划分(partition)指样本空间一分为二,相当于决策树中节点分裂: isolation指将某个样本点与其他样本点区分开. iForest的基本思想非常简单:完成异常点的isolation所需的划分数大于正常样本点(非异常).如下图所示: \…
YOLO算法(You Only Look Once) 比如你输入图像是100x100,然后在图像上放一个网络,为了方便讲述,此处使用3x3网格,实际实现时会用更精细的网格(如19x19).基本思想是,使用图像分类和定位算法,然后将算法应用到9个格子上.更具体一点,你需要这样定义训练标签,对于9个格子中的每一个都指定一个标签y,其中y是一个8维向量(与前面讲述的一样,分别为Pc,bx,by,bh,bw,c1,c2,c3,其中Pc=1表示含有目标,Pc=0表示为背景:c1,c2,c3表示要分类的3个…
目标检测是很多计算机视觉任务的基础,不论我们需要实现图像与文字的交互还是需要识别精细类别,它都提供了可靠的信息.本文对目标检测进行了整体回顾,第一部分从RCNN开始介绍基于候选区域的目标检测器,包括Fast R-CNN.Faster R-CNN 和 FPN等.第二部分则重点讨论了包括YOLO.SSD和RetinaNet等在内的单次检测器,它们都是目前最为优秀的方法. 一.基于候选区域的目标检测器 1.1  滑动窗口检测器 自从 AlexNet 获得 ILSVRC 2012 挑战赛冠军后,用 CN…
对于异常检测算法,使用特征是至关重要的,下面谈谈如何选择特征: 异常检测假设特征符合高斯分布,如果数据的分布不是高斯分布,异常检测算法也能够工作,但是最好还是将数据转换成高斯分布,例如使用对数函数:…
Isolation,意为孤立/隔离,是名词,其动词为isolate,forest是森林,合起来就是“孤立森林”了,也有叫“独异森林”,好像并没有统一的中文叫法.可能大家都习惯用其英文的名字isolation forest,简称iForest . iForest适用于连续数据(Continuous numerical data)的异常检测,将异常定义为“容易被孤立的离群点(more  likely to be separated)”——可以理解为分布稀疏且离密度高的群体较远的点.用统计学来解释,在…
每当听到有人问“如何入门计算机视觉”这个问题时,其实我内心是拒绝的,为什么呢?因为我们说的计算机视觉的发展史可谓很长了,它的分支很多,而且理论那是错综复杂交相辉映,就好像数学一样,如何学习数学?这问题似乎有点笼统.有点宽泛.所以我都会具体问问你想入门计算机视觉的哪个话题,只有顺着一个话题理论联合实际,才有可能扩展到几个话题. yolo类算法,从开始到现在已经有了3代,我们称之为v1.v2.v3,一路走来,让人能感觉到的是算法的性能在不断的改进,以至于现在成为了开源通用目标检测算法的领头羊(ps:…
Isolation,意为孤立/隔离,是名词,其动词为isolate,forest是森林,合起来就是“孤立森林”了,也有叫“独异森林”,好像并没有统一的中文叫法.可能大家都习惯用其英文的名字isolation forest,简称iForest . iForest适用于连续数据(Continuous numerical data)的异常检测,将异常定义为“容易被孤立的离群点(more  likely to be separated)”——可以理解为分布稀疏且离密度高的群体较远的点.用统计学来解释,在…
在给定的数据集,我们假设数据是正常的 ,现在需要知道新给的数据Xtest中不属于该组数据的几率p(X). 异常检测主要用来识别欺骗,例如通过之前的数据来识别新一次的数据是否存在异常,比如根据一个用户以前的使用习惯(数据)来判断这次使用的用户是不是以前的用户.或者根据之前CPU正常运行时候的的用量数据来判断当前状态下的CPU是否正常工作. 这里我们通过密度估计来进行判断:if   P(X) >ε时候,为normal(正常)<ε 的时候为异常 . 我们用x(i)来表示用户的第i个特征,模型P(x)…
区域检测算法-MSERs:最大稳定极值区域 参考书籍——<图像局部不变性特征与描述>王永明.王贵锦著 MSER最大极值稳定区域的提取步骤:1.像素点排序   2.极值区域生成   3.稳定区域判定   4.区域拟合   5.区域归一化 MSER算法介绍:参看博客——http://www.cnblogs.com/frischzenger/p/3334569.html 问题综合: 1.<图像局部不变性特征与描述>P103,分水岭算法的思想是怎么样的? 答:1)分水岭算法步骤和openc…
目标检测(object detection)是计算机视觉中非常具有挑战性的一项工作,一方面它是其他很多后续视觉任务的基础,另一方面目标检测不仅需要预测区域,还要进行分类,因此问题更加复杂.最近的5年使用深度学习方法进行目标检测取得了很大的突破,因此想写一个系列来介绍这些方法.这些比较重要的方法可以分成两条主线,一条是基于区域候选(region proposal)的方法,即通过某种策略选出一部分候选框再进行后续处理,比如RCNN-SPP-Fast RCNN-Faster RCNN-RFCN等:另一…
昨天,Facebook AI 研究院(FAIR)开源了 Detectron,业内最佳水平的目标检测平台. 昨天,Facebook AI 研究院(FAIR)开源了 Detectron,业内最佳水平的目标检测平台.据介绍,该项目自 2016 年 7 月启动,构建于 Caffe2 之上,目前支持大量机器学习算法,其中包括 Mask R-CNN(何恺明的研究,ICCV 2017 最佳论文)和 Focal Loss for Dense Object Detection,(ICCV 2017 最佳学生论文)…
Single Shot multibox Detector,简称SSD,是一种目标检测算法. Single Shot意味着SSD属于one stage方法,multibox表示多框预测. CNN 多尺度 特征图 参考链接: https://arxiv.org/pdf/1711.06897.pdf…
Girshick, Ross, et al. “Rich feature hierarchies for accurate object detection and semantic segmentation.” Proceedings of the IEEE conference on computer vision and pattern recognition. 2014. R-CNN的全称是Region-CNN,它可以说是第一个成功将深度学习应用到目标检测上的算法.后面要讲到的Fast…
R-CNN全称为Region-CNN,它可以说是第一个成功地将深度学习应用到目标检测上的算法.后面提到的Fast R-CNN.Faster R-CNN全部都是建立在R-CNN的基础上的. 传统目标检测流程: (1)区域选择(穷举策略:采用滑动窗口,且设置不同的大小,不同的长宽比对图像进行遍历,时间复杂度高) (2)特征提取(SIFT.HOG等:形态多样性.光照变换多样性.背景多样性使得特征鲁棒性差) (3)分类器分类(SVM.Adaboost) 一.RCNN思路(Selective Search…
目标检测算法SSD之训练自己的数据集 prerequesties 预备知识/前提条件 下载和配置了最新SSD代码 git clone https://github.com/weiliu89/caffe ~/work/ssd cd $_ git checkout ssd 编译caffe 下载必要的模型(包括prototxt和caffemodel): 运行了evaluation和webcam的例子,会提示caffe的import报错.添加pycaffe路径到PYTHONPATH环境变量,或者写一个_…