有关各种优化算法的详细算法流程和公式可以参考[这篇blog],讲解比较清晰,这里说一下自己对他们之间关系的理解. BGD 与 SGD 首先,最简单的 BGD 以整个训练集的梯度和作为更新方向,缺点是速度慢,一个 epoch 只能更新一次模型参数. SGD 就是用来解决这个问题的,以每个样本的梯度作为更新方向,更新次数更频繁.但有两个缺点: 更新方向不稳定.波动很大.因为单个样本有很大的随机性,单样本的梯度不能指示参数优化的大方向. 所有参数的学习率相同,这并不合理,因为有些参数不需要频繁变化,而…
Coursera吴恩达<优化深度神经网络>课程笔记(2)-- 优化算法 深度机器学习中的batch的大小 深度机器学习中的batch的大小对学习效果有何影响? 1. Mini-batch gradient descent SGD VS BGD VS MBGD 3. 指数加权平均(Exponentially weighted averages) 这种滑动平均算法称为指数加权平均(exponentially weighted average)其一般形式为: 值决定了指数加权平均的天数,近似表示为:…
转 xiewmang 新浪博客 本文主要介绍了Oracle数据货场中的三种优化:对分区的优化.维度优化和物化视图的优化,并给出了详细的优化代码,希望对您有所帮助. 我们在做数据库的项目时,对数据货场的优化,大约的原理只有两个:一是数据分块储藏,便于数据的转储和管教:二是其中处理,长进数据供给的速度.本文主要介绍了Oracle数据货场中的三种优化:对分区的优化.维度优化和物化视图的优化,基上面两个大约的原理,借助于数据货场的观念,罗列数据库的优化措施:1.分区在数据货场中,事实表,索引表,维度表分…
首先定义:待优化参数:  ,目标函数: ,初始学习率 . 而后,开始进行迭代优化.在每个epoch  : 计算目标函数关于当前参数的梯度:  根据历史梯度计算一阶动量和二阶动量:, 计算当前时刻的下降梯度:  根据下降梯度进行更新:  掌握了这个框架,你可以轻轻松松设计自己的优化算法. 一阶动量.二阶动量概念的引入,一个框架纳入所有优化算法,更清晰 一个框架看懂优化算法之异同 SGD/AdaGrad/Adam Adam那么棒,为什么还对SGD念念不忘 (1) —— 一个框架看懂优化算法 机器学习…
Adam那么棒,为什么还对SGD念念不忘 (1) —— 一个框架看懂优化算法 机器学习界有一群炼丹师,他们每天的日常是: 拿来药材(数据),架起八卦炉(模型),点着六味真火(优化算法),就摇着蒲扇等着丹药出炉了. 不过,当过厨子的都知道,同样的食材,同样的菜谱,但火候不一样了,这出来的口味可是千差万别.火小了夹生,火大了易糊,火不匀则半生半糊. 机器学习也是一样,模型优化算法的选择直接关系到最终模型的性能.有时候效果不好,未必是特征的问题或者模型设计的问题,很可能就是优化算法的问题. 说到优化算…
优化方法总结以及Adam存在的问题(SGD, Momentum, AdaDelta, Adam, AdamW,LazyAdam) 2019年05月29日 01:07:50 糖葫芦君 阅读数 455更多 分类专栏: 算法 深度学习   版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/yinyu19950811/article/details/90476956 文章目录 优化方法概述 1.整体…
深度学习笔记:优化方法总结(BGD,SGD,Momentum,AdaGrad,RMSProp,Adam) 深度学习笔记(一):logistic分类 深度学习笔记(二):简单神经网络,后向传播算法及实现 深度学习笔记(三):激活函数和损失函数 深度学习笔记:优化方法总结 深度学习笔记(四):循环神经网络的概念,结构和代码注释 深度学习笔记(五):LSTM 深度学习笔记(六):Encoder-Decoder模型和Attention模型…
排序算法 排序算法中包括:简单排序.高级排序 简单排序 简单排序常用的有:冒泡排序.选择排序.插入排序 冒泡排序代码如下: private static void bubbleSrot(int[] arr) { for (int i = 0; i < arr.length - 1; i++) { for (int j = i + 1; j < arr.length; j++) { if (arr[i] > arr[j]) { int temp = arr[i]; arr[i] = arr…
SGD简介 caffe中的SGDSolver类中实现了带动量的梯度下降法,其原理如下,\(lr\)为学习率,\(m\)为动量参数. 计算新的动量:history_data = local_rate * param_diff + momentum * history_data \(\nu_{t+1}=lr*\nabla_{\theta_{t}}+m*\nu_{t}\) 计算更新时使用的梯度:param_diff = history_data \(\Delta\theta_{t+1}=\nu_{t+…
前言 这里讨论的优化问题指的是,给定目标函数f(x),我们需要找到一组参数x,使得f(x)的值最小. 本文以下内容假设读者已经了解机器学习基本知识,和梯度下降的原理. Batch gradient descent 梯度更新规则: BGD 采用整个训练集的数据来计算 cost function 对参数的梯度:     缺点: 由于这种方法是在一次更新中,就对整个数据集计算梯度,所以计算起来非常慢,遇到很大量的数据集也会非常棘手,而且不能投入新数据实时更新模型. 我们会事先定义一个迭代次数 epoc…