TensorFlow2.0使用方法】的更多相关文章

TensorFlow2.0 1 使用技巧 更新到最新版本: pip install --upgrade tensorflow pip install --upgrade tensorflow-gpu 导入TensorFlow模块: import tensorflow as tf 查看版本号: print('TensorFlow版本号为:', tf.__version__) 查看是否支持GPU运算: rint('GPU是否可用:', tf.test.is_gpu_available()) prin…
第1章 Tensorfow简介与环境搭建 本门课程的入门章节,简要介绍了tensorflow是什么,详细介绍了Tensorflow历史版本变迁以及tensorflow的架构和强大特性.并在Tensorflow1.0.pytorch.Tensorflow2.0之间做了对比.最后通过实战讲解了在Google cloud和AWS两个平台上的环境配置. 1-1 课程导学试看 1-2 Tensorflow是什么 1-3 Tensorflow版本变迁与tf1.0架构 1-4 Tensorflow2.0架构试…
1 引言 TensorFlow2.0版本已经发布,虽然不是正式版,但预览版都发布了,正式版还会远吗?相比于1.X,2.0版的TensorFlow修改的不是一点半点,这些修改极大的弥补了1.X版本的反人类设计,提升了框架的整体易用性,绝对好评! 不多说了,赶紧来学习一波吧,做最先吃螃蟹的那一批人!先从TensorFlow的基本数据结构——张量(tensor)开始. 2 创建 2.1 constant()方法 >>> import tensorflow as tf >>>…
0 前言 TensorFlow 2.0,今天凌晨,正式放出了2.0版本. 不少网友表示,TensorFlow 2.0比PyTorch更好用,已经准备全面转向这个新升级的深度学习框架了. ​ 本篇文章就带领大家用最简单地方式安装TF2.0正式版本(CPU与GPU),由我来踩坑,方便大家体验正式版本的TF2.0. 废话不多说现在正式开始教程. 1 环境准备 我目前是在Windows10上面,使用conda管理的python环境,通过conda安装cuda与cudnn(GPU支持),通过pip安装的t…
此篇教程参考自TensorFlow 2.0 + Keras Crash Course,在原文的基础上进行了适当的总结与改编,以适应于国内开发者的理解与使用,水平有限,如果写的不对的地方欢迎大家评论指出.觉得文章有用的话麻烦点赞,想看原文可以点击链接kx上网访问. ​ 0 序 TensorFlow经过四年的发展,逐渐成为深度学习与机器学习框架的霸主,市场占有率与用户都遥遥领先于其他竞争对手.下图为下图是KDnuggets网站对2018年的机器学习框架的使用做的一个调查统计.可以可以看出当时Tens…
.caret, .dropup > .btn > .caret { border-top-color: #000 !important; } .label { border: 1px solid #000; } .table { border-collapse: collapse !important; } .table td, .table th { background-color: #fff !important; } .table-bordered th, .table-bordere…
.caret, .dropup > .btn > .caret { border-top-color: #000 !important; } .label { border: 1px solid #000; } .table { border-collapse: collapse !important; } .table td, .table th { background-color: #fff !important; } .table-bordered th, .table-bordere…
版本: python3.5 Anaconda 4.2.0 tensorflow2.0 cpu版本 1.安装命令 pip3 install tensorflow==2.0.0.0a0 -i https://pypi.tuna.tsinghua.edu.cn/simple/ # -i表示重新指定镜像,提高下载速度 2.报错以及解决方法 (1)报错: “Cannot remove entries from nonexistent file c:\program files\anaconda3\lib\…
最近学习神经网络,tensorflow,看了好多视频,查找了好多资料,感觉东西都没有融入自己的思维中.今天用tensorflow2.0写了一个MNIST手写体的版本,记录下学习的过程. 复现手写体识别的基本步骤:准备数据,处理数据,搭建模型,迭代训练模型,使用模型. 一.全连接模型 1.导入数据集(此次编写运行均在notebook) 先引入所需模块,在用tf.keras下载数据 2.分析图片的大小 1)用shape查看数量大小:2)通过指定[0][1]来查看具体图像尺寸,lable存储的是ima…
tensorflow2.0 使用keras一般通过tensorflow.keras来使用,但是pycharm没有提示,原因是因为实际的keras路径放在tensorflow/python/keras,但是在程序中tensorflow有没有python这个目录,解决方法如下: try: import tensorflow.python.keras as keras except: import tensorflow.keras as keras 这样pycharm既可以有提示,同时也不需要在程序运…